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Abstract

Audio-to-audio alignment of musical recordings is the mapping of events in one

recording to their corresponding events in other recordings of the same underlying

musical piece. Among other applications, musical audio-to-audio alignment is used

for: comparing and analyzing musical performances; finding different performances

and arrangements of a musical work in a database; discovering musical motifs

in field recordings of folk music; automatically synchronizing multiple takes (re-

recordings of specific excerpts) in a recording studio; and aligning a musician’s

performance to a score in realtime, for purposes of interactive performance such

as automated accompaniment. This thesis investigates audio-to-audio alignment by

an algorithm that has not previously been applied to music, the continuous profile

model (Cpm) (Listgarten et al. 2005).

In this thesis, the Cpm is used to align pairs of recordings (pairwise align-

ment) as well as groups containing more than two recordings (multiple alignment).

A standard evaluation methodology is used to systematically compare pairwise

alignment by the Cpm to pairwise alignment by dynamic time warping (Dtw),

the algorithm most frequently used for audio-to-audio alignment of music. The

evaluation methodology is then generalized to multiple dimensions in order to

compare two approaches to multiple alignment: simultaneous multiple alignment

with the Cpm and iterative pairwise alignment with Dtw.
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Résumé

L’alignement audio-audio des enregistrements sonores est le mappage de certains

moments dans un enregistrement aux moments correspondants dans d’autres en-

registrements de la même pièce musicale. Parmi d’autres applications, l’alignement

audio-audio sert à : comparer et analyser des performances musicales; trouver de

plusieurs performances et arrangements d’une oeuvre musicale dans une base de

données; découvrir des motifs musicaux dans des enregistrements de terrain de la

musique folk; synchroniser automatiquement de multiples prises (réenregistrements

d’extraits spécifiques) dans un studio d’enregistrements; et aligner une performance

d’un musicien qui utilise une partition en temps réel pour permettre des perfor-

mances interactifs avec des ordinateurs, par exemple, l’accompagnement automatisé.

Dans cette thèse, on examine l’alignement des enregistrements musicaux accompli

par un algorithme qui n’a auparavant jamais été appliqué à la musique qui s’appelle

le « modèle du profil continu » (« continuous profile model » ou « Cpm » en anglais)

(Listgarten et al. 2005).

Cette thèse examine la Cpm pour les alignements deux à deux et les alignements

multiples des enregistrements sonores. On emploie une méthodologie standard

pour comparer systématiquement l’alignement deux à deux accompli par le Cpm

à l’alignement deux à deux accompli par la « déformation temporelle dynamique »

(en anglais, « dynamic time warping » ou « Dtw »), l’algorithme le plus souvent em-

ployé pour l’alignement audio-audio de la musique. La méthodologie d’évaluation

est ensuite généralisé à plusieurs dimensions à comparer deux approches pour

l’alignement multiple : alignement multiple simultanée par le Cpm à itérative

alignement par paires avec Dtw.
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1—Introduction and motivation

A udio-to-audio alignment of musical recordings is the mapping of events in

one recording to the corresponding events in other recordings of the same

underlying musical content. Motivations for performing audio-to-audio alignment

include comparing and analyzing musical performances; finding different perfor-

mances and arrangements of a musical work in a database; discovering musical

motifs in field recordings of folk music; automatically synchronizing multiple takes

in a recording studio; and aligning a musician’s performance to a score in realtime,

for purposes of interactive performance such as automated accompaniment. In one

specific example, multiple field recordings of the same folk song have been aligned to

one another in order to study differences among them in tempo, tuning, and melodic

ornamentation (Müller et al. 2010).

Some audio-to-audio alignment tasks require pairwise alignment: mapping the

events between a pair of recordings. One example of pairwise alignment is the syn-

chronization of two different performances of a composition, such as synchronizing

Jean Pierre Rampal’s recording of Claude Bolling’s “Baroque and Blue” with the

Roselli Quartet’s recording of the same piece. Pairwise alignment is also required

in tasks that involve a specific reference recording. For example, to determine which

of a selection of live performances of Queen’s “Under Pressure” is the most similar

(in pitch/rubato/harmonization/etc.) to the version recorded on their 1982 album

Hot Space, each of the live recordings could be aligned individually to the reference

track—that studio recording—in order to calculate a similarity measure. The output

similarity measures could then be ranked to determine the most similar of the live

recordings. As of publication time, most audio-to-audio alignment tasks in the

literature use pairwise alignment (as is made clear by Table 2.1 in Chapter 2).

Other audio-to-audio alignment tasks involve multiple alignment: mapping a

whole group of recordings to one another. Tasks that fit into this category often

involve no obvious reference recording. For example, to answer the question “which
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phrases of the traditional Irish jig ‘The Lark on the Strand’ are often played with the

same ornamentation, phrasing, and emphasis, and in which sections are there often

variations?” multiple recordings of this tune1 must be aligned to one another before

an analysis can take place. This task contains no obvious reference recording, as no

single recording is more significant than any other.

Algorithms used to perform audio-to-audio alignment are often generic time-

series alignment algorithms, developed for alignment of data other than musical

audio and later adapted to align music. For example, musical audio-to-audio

alignment is often implemented through dynamic time warping (Dtw), a pairwise

alignment algorithm that was first introduced in the context of speech recognition

tasks in the 1970s. The application of generic alignment algorithms to musical audio

is possible because audio recordings are time-series data, sequences of successively

measured data observations. In regards to terminology, time-series sequences are

also called signals and data observations are often called features. “Temporal

registration” is a term commonly used to describe alignment of time-series data.

There are two main approches for aligning more than two signals (musical

or otherwise) to one another: an iterative pairwise approach and a simultaneous

multiple alignment approach. These two approaches to multiple alignment are

illustrated in Figure 1.1. The iterative pairwise approach involves first performing a

series of pairwise alignments and then inferring the overall group mapping through

iterative association among the pairs. This association can take place in a number of

ways, such as through choice of a common reference signal (e.g., aligning signal B to

signal A, then signal C to A, and finally D to A) or through sequential linking (e.g.,

aligning signal A to signal B, aligning B to C, and aligning C to D). In contrast, the

simultaneous approach to multiple alignment involves leveraging the information

from all signals when performing alignment. One simultaneous alignment approach

involves combining the original signals into a hybrid signal and then using that

hybrid as a reference signal (e.g., averaging four signals A, B, C, and D into signal

Z and then pairwise aligning A to Z, B to Z, and so on). Simultaneous multiple

alignment algorithms are also known as multiple sequence alignments (Msas).

When multiple alignment is required, the iterative pairwise alignment approach

is often chosen (Sapp 2007; Montecchio and Cont 2011b). While Msa algorithms

have been applied to alignment tasks in non-musical fields, from biological sequence

analysis (Chan et al. 1992) to the modeling of human motion (Zhou and De la

1As of March 2013, Irish folk-music website The Session notes 45 independent recordings of this
tune: www.thesession.org/tunes/1634/recordings.

www.thesession.org/tunes/1634/recordings
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Fig. 1.1 Two approaches to multiple alignment: iterative pairwise align-
ment, using an arbitrarily chosen reference signal to map the signals to
one another, and simultaneous alignment, using a reference signal created
from a fusion of all input signals.
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Torre 2012), applications of Msa algorithms to musical recordings—and audio in

general—have been limited. To the best of our knowledge, only two papers have

applied Msa algorithms to musical recordings: In the first, Basaran et al. (2011)

propose a probabilistic model for aligning multiple musical recordings of the same

performance, as recorded by multiple microphones of varying quality and noisiness.

In the second, Sanguansat (2012) uses multi-dimensional Dtw to query a musical

database with a user-sung input: alignment is calculated in a multi-dimensional

space, with as many dimensions as aligned signals, rather than the standard two-

dimensional space of pairwise alignment (Zhou and De la Torre 2012).

This thesis implements audio-to-audio alignment with a relatively new Msa

algorithm: the continuous profile model (Cpm). The Cpm is a probabilistic model

developed to simultaneously align and perform difference detection (detection of

overall signal similarity or difference) on a group of signals. While the Cpm has been

shown to align speech recordings (Listgarten 2007), to the best of our knowledge it

has not yet been used to align musical recordings. Notably, a software implementa-

tion of the Cpm has been made freely available as an open-source Matlab toolbox

(Listgarten 2007).2

1.1 Thesis structure

In this thesis, audio-to-audio alignment by the Cpm is implemented and compared

to audio-to-audio alignment by Dtw. First, pairwise alignment with the Cpm is

compared to pairwise alignment by Dtw. A standard methodology for evaluating

pairwise alignment, set forth by Dixon and Widmer (2005), is used to systematically

compare the algorithms’ results. This evaluation involves measuring the amont of

deviation between an algorithmically generated alignment and the ground-truth

alignment. Second, two approaches to multiple alignment (simultaneous alignment

with the Cpm versus iterative pairwise alignment using Dtw) are compared through

aligning groups of three, four, eight, twelve, and sixteen recordings. The aforemen-

tioned pairwise evaluation metric is generalized to evaluate the results of multiple

alignment, which are in the form of multi-dimensional alignment paths. The thesis

is organized as follows:

Chapter 2 presents a history of the alignment algorithms as they pertain

both to audio and to symbolic music alignment; an overview of common

2www.cs.toronto.edu/~jenn/CPM/

www.cs.toronto.edu/~jenn/CPM/
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algorithms and features; a literature review of research on audio-to-audio

alignment; and a summary of commercial and open-source audio-to-

audio alignment software.

Chapter 3 explains the Cpm algorithm and describes how it is used to

align musical recordings.

Chapter 4 describes the evaluation methodology, including the dataset;

the evaluation metrics; and the implementation.

Chapter 5 presents and discusses the results of the evaluation results.

Chapter 6 concludes the thesis with a discussion of future work.
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2—Literature review

T his chapter places audio-to-audio alignment in its historical context (Sec-

tion 2.1), describes algorithms and features used for alignment (Section 2.2),

and reviews audio-to-audio alignment research applications (Section 2.3). The

chapter concludes with a summary of commercial and non-commercial software

designed specifically for alignment of music (Section 2.4).

2.1 The inception of music alignment

The first alignment algorithms applied to music, string alignment and Dtw, were

borrowed from the tasks of biological sequence alignment and speech recognition.

String alignment algorithms were first developed for biological sequence alignment

in 1970 (Needleman and Wunsch). In biological sequence alignment, sequences of

Dna, Rna, and proteins are compared in order to determine their structural and

evolutionary relationships. Dtwwas developed for and popularized by spoken word

recognition tasks (Sakoe and Chiba 1971; Itakura 1975; Sakoe and Chiba 1978).

Speech recognition must take variations in speaking rate into account; alignment

helps minimize the effects of time variations when calculating the similarity of two

utterances. For example, “good” (spoken quickly) and “goood” (spoken slowly) need

to be identified as the same word, despite their different deliveries. By lining up the

start of each phoneme, identification is often more accurate. (Both string alignment

and Dtw are dynamic programming (Dp) algorithms, and will be described in the

following section.)

Early applications of alignment algorithms to music focused on symbolic music

representations. Dannenberg (1984) used Dtw for a score-following system based

directly on a speech-to-speech alignment system designed for overdubbing film

dialogue (Bloom 1984). This score-following system aligned both symbolic and

audio inputs to a symbolic score in realtime. Independently that same year, Vercoe
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(1984) also performed audio-to-symbolic alignment for realtime score following,

using a trained learning strategy rather than Dtw.

String-matching algorithms were first applied to music when Mongeau and

Sankoff (1990) calculated the similarity between symbolic scores in a work modeled

after biological sequence alignment (Kruskal and Liberman 1983; Kruskal and

Sankoff 1983). Stammen and Pennycook (1993) performed realtime identification

of symbolic music after first simplifying the input symbolic notes into melodic

contours, using Dtw to align those contours. This music identification system was

modeled after Itakura’s (1975) discrete word recognition system.

The earliest alignment of audio representations of music to other audio rep-

resentations of music occurred in 2001, when Yang (2001) used Dtw to perform

content-based music retrieval—searching a database of musical audio for excerpts

most melodically similar to an audio query. That same year, Orio and Schwarz (2001)

and Meron and Hirose (2001) each performed audio-to-symbolic alignment by first

converting both symbolic scores and audio recordings to pitch-based harmonic

energy features and then aligning those features.

More recently, symbolic music alignment has shifted towards probabilistic mod-

eling approaches (discussed by Orio et al. 2003), following trends in both speech

processing (Rabiner 1989) and biological sequence alignment (Haussler et al. 1993).

Audio-to-audio alignment applications, however, have continued to favor Dp-based

algorithms. A few audio-to-audio alignment applications have used probabilistic

models for performance analysis (Devaney et al. 2009; Devaney et al. 2011), studio

engineering (Basaran et al. 2011), and joint structure analysis (Tabus et al. 2012),

but Dp algorithms like Dtw are still very popular. This algorithmic preference will

be highlighted by Table 2.1 at the end of Section 2.3.

2.2 Overview of algorithms and features

This section describes algorithms (Section 2.2.1) and features (Section 2.2.2) often

used for audio-to-audio alignment.

2.2.1 Algorithm selection

For a given alignment task, the choice of algorithm and manner in which that

algorithm is implemented must take into account several considerations. These con-

siderations include the approach to multiple alignment if more than two recordings



2.2 Overview of algorithms and features 9

are to be aligned (as discussed in Chapter 1); the necessary algorithmic constraints,

based on both the similarity in global structure across recordings and the operational

deadline of the alignment task (i.e., whether alignment needs to be performed in

realtime or not); the relationship among the timelines of the recordings to be aligned;

and the type of algorithmic approach desired.

Constraints

Two considerations relating to algorithmic constraints include the structural similar-

ity of the recordings to be aligned and the operational deadline of the alignment task.

Structural similarity influences the choice between global and partial alignment

algorithms. Global alignment is the alignment of entire recordings to one another,

while partial music alignment aligns segments of recordings to one another despite

the presence of structural variations between the recordings (e.g., an extended intro

or the omission of a verse). Operational deadlines influence the choice between

online and offline algorithms. In contrast to offline (non-realtime) alignment, online

alignment algorithms are designed to run in realtime: the alignment of any given

sample relies on past and present samples, but not future samples, for at least one of

the recordings being aligned.

For a particular alignment task, consideration of these constraints influences the

parameters and programmatic implementation of an algorithm but not necessarily

the specific type of algorithm chosen in the first place. Dtw, for example, is generally

implemented with boundary constraints that force global alignment, but has also

been used for partial alignment (Müller and Appelt 2008; Ewert et al. 2009).

Similarly, although Dtw is generally implemented as an offline algorithm, it has

been tailored to run online for some applications (Dixon 2005a).

Timeline transformations

By definition, two or more recordings of the same music contain a common, ordered

set of musical events (e.g., onsets, beats, or feature frames). In this thesis, the

common, ordered set of musical events in a recording is called its event timeline.

Using this terminology, audio-to-audio alignment maps the event timelines of a set

of recordings to one another.

Recordings of the same musical piece therefore have the same underlying event

timeline, even though their individual event timelines are not necessarily identical.

For example, two performances of Happy Birthday have the same underlying event
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timeline, as they contain the same ordered set of pitches, note durations, and lyrics.

Their individual event timelines will differ, however, if they are sung at different

tempi, have different durations of the pauses between verses, or are sung with

different tempo fluctuations.

The relationships between the event timelines of any two recordings can be

described in terms of three transformations—linear shifting, linear scaling, and

nonlinear warping:

• In a linearly shifted transformation the timelines of the recordings are identical

(i.e., inter-event timing is preserved) but one recording is shifted in time

relative to the other (translated), so that there is a delay at the beginning of

one recording in relation to the other. For example, in recordings of the exact

same musical performance made by two different recording devices, all timing

information of the audio will be identical because both are recordings of the

exact same sounds. One will likely have at least a slight lag before the start of

the musical performance, however, as the “record” buttons may not have been

pushed at precisely the same instant on both recording devices.

• In a linearly scaled transformation the ratio between event timings in each

recording is preserved but the entire timeline of one recording is scaled (evenly

stretched or compressed in time) in relation to the other, so that the tempo

is faster in one recording than the other. For example, recordings played

back at a faster sampling rate than they were recorded have timelines that are

linearly scaled in relation to the original, as the timing of events in the faster

version is merely a condensed version of the original timing. (This playback

manipulation is called “pitching” by radio stations, where it is used to fit more

songs or advertising into an hour of programming (Cano et al. 2002).)

• In a nonlinearly warped transformation the ratio between event timing in the

recordings is not preserved, so that there are different fluctuations in event

timings in each of the recordings. For example, different performances of

the same symbolic score are nonlinearly related, due to the intentional and

accidental tempo fluctuations (rubato) introduced by the different performers,

as no two human performances of the same piece will have identical timing.

Recordings to be aligned often contain a combination of these transformations, and

these transformations inform the choice of alignment algorithm. Cross-correlation,
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for example, is ideal for linearly shifted timeline transformations but performs

poorly on linearly scaled and nonlinearly warped transformations. Dtw and hidden

Markov models (Hmms), however, are designed to account for scaled and nonlinear

timeline relationships. It should be noted that the relationship between two time-

lines is completely independent of the differences in spectral content between them.

For example, two different performances of the same score by the same performer

on the same instrument (e.g., two takes of Jean-Pierre Rampal performing Bach’s

Flute Concerto in A) will contain at least slight nonlinear temporal fluctuations. In

contrast, sonifications of a single Midi score by two different instrumentations (e.g.,

flute and trombone), will differ in timbre but have an identical, non-transformed

timeline relationship.

Similarity matrices, also known as cross recurrence plots (Crps) and dissimilarity

matrices, are often used to visualize the structural similarities between a pair of

recordings. A similarity matrix is created by plotting the distances (similarity

measures) between every feature in one recording and every feature in the other

recording as a color value in a two-dimensional grid.1 The x-axis of a similarity

matrix represents the timeline of one recording; the y-axis represents the timeline

of the other. Diagonal lines in a similarity matrix indicate passages of alignment

between the recordings, and the diagonally trending line from the start of both

recordings to the end of both recordings is the global alignment warping path. A

similarity matrix that compares a sequence to itself is called a self-similarity matrix

(Figure 2.1).2

Figures 2.2 to 2.4 show example similarity matrices for each type of timeline

transformation. In general, if the global alignment path (diagonally trending line

through the entirety of both recordings) is linear (i.e., straight), there is a linear

timeline transformation (shifted or scaled) between the two recordings; if the

alignment line is nonlinear (e.g., curved or meandering), there is a nonlinear timeline

transformation between them:

• For a linearly scaled transformation, the diagonal line stretches from the first

to the last features in both recordings. Since by one recording is longer than

the other, the similarity matrix is rectangular (Figure 2.2).

1The similarity between features is often calculated with the Euclidean distance measure.
2Self-similarity matrices were first applied to musical audio by Foote (1999), and have since been

used to find musical structure, among other musical applications (Foote 2000; Foote and Cooper 2001;
Müller and Kurth 2006).
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• For a linearly shifted transformation, the diagonal line spans an equal distance

in the horizontal and vertical dimensions but does not originate at the first

feature of both recordings. Since one recording is longer than the other, the

similarity matrix is rectangular (Figure 2.3).

• For a nonlinearly warped transformation, the diagonal path stretches from the

first to the last features in both recordings but is not a straight line. Because the

lengths of the two recordings may or may not be the same, no generalization

can be made about the shape of the similarity matrix (Figure 2.4).

In the case of no transformation between event timelines, the global alingment path

is a straight line from the first feature of each recording to the last feature of each

recording. Since the timelines are the same length, the similarity matrix is square.

By definition, the two recordings of a self-similarity matrix have identical timelines;

in this case, the alignment path is called the line of identity.

Fig. 2.1 Self-similarity matrix of a performance of Ballade from the
Chopin dataset (discussed in Section 4.2.1).

Algorithmic approaches

Several different algorithms and types of algorithms have been used for audio-

to-audio alignment. These algorithms, described below, include cross-correlation,
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Fig. 2.2 Similarity matrix of a shifted timeline transformation. The
y−axis recording is a performance of Ballade from the Chopin dataset; the
x−axis recording is the same performance following ten seconds of silence.

Fig. 2.3 Similarity matrix of a scaled timeline transformation. The y−axis
recording is a performance of Ballade from the Chopin dataset; the x−axis
recording is the same performance slowed down by a factor of two, with
pitches preserved.
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Fig. 2.4 Similarity matrix of a nonlinearly warped timeline transforma-
tion. The x− and y−axis recordings are both performances of Ballade from
the Chopin dataset (tracks 5 and 14, respectively).

recurrence quantification analysis, string matching and Dtw (both Dp-based), prob-

abilistic models such as hidden Markov models and the sequential Monte Carlo

method, and fingerprint clustering:

• With cross-correlation, recordings are aligned by linearly shifting one record-

ing in relation to the other until the similarity between the two signals is

maximized. Similarity between the recordings is often calculated by summing

the Euclidean distances between pairs of features.

• With recurrence quantification analysis (Rqa), partial alignments are calcu-

lated by identifying diagonal lines running through a similarity matrix, and

taking those lines to be alignment mappings. Rqa measures have been used

to calculate partial alignment (Serrà et al. 2009). This is in contrast to Dtw,

discussed below, in which a single path through a similarity matrix is computed

deterministically.

• Dynamic programming (Dp) is a method of solving complex problems by

breaking them down into smaller subproblems (Bellman 1952); Dp-based



2.2 Overview of algorithms and features 15

approaches to audio-to-audio alignment include string matching algorithms

and Dtw.

With string matching, two or more “strings” of features (time-series sequences)

are aligned to one another through minimizing the number of edit operations

(feature insertions, deletions, or substitutions) needed to transform one string

to another. String alignment algorithms are used more often for alignment

of symbolic rather than audio music representations; because most string-

matching algorithms are designed for single-dimensional features, they are are

poorly suited for aligning the multi-dimensional features most often extracted

from audio recordings. Basic Local Alignment Search Tool (Blast), developed

for biological sequence alignment (Altschul et al. 1990), is one of the few

string-matching algorithms adapted for audio-to-audio alignment.

With Dtw, an optimal “warping path” is deterministically calculated through

a similarity matrix. The warping path optimally minimizes the total similarity,

or distance, between the features of the input recordings. Various constraints

are often placed on the possible warping paths, to favour certain alignment

characteristics and reduce computation time. Examples of constraints include

forced monotonicity (preserving the order of events in each recording), forced

continuity (ensuring that the path is restricted to neighbouring points), bound-

ary conditions, and global search space constraints (upper and lower bounds

placed on the warping path) (Sakoe and Chiba 1990). Dtw is often used instead

of measures like Euclidean distance as a tool to compare overall similarity

between pairs of signals, through summing the total cost/similarity along the

warping path. As seen in Table 2.1, Dtw is the alignment algorithm of choice

for most published audio-to-audio alignment research.

• With probabilistic algorithms like hidden Markov models (Hmms), a model is

trained from recordings or a symbolic score; an alignment mapping is then

calculated between the model and an input recording. This mapping is often

performed via Viterbi alignment (Viterbi 1967)—a Dp-based algorithm that

calculates the likelihood of a sequence of events in a probabilistic model.

Another probabilistic model used for audio-to-audio alignment is the

sequential Monte Carlo (Smc) method, a simulation-based model estimation

technique also known as particle filtering. With Smc, weighted “particles”

(short excerpts from one recording) are used to predict the position of features
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from a second recording. Because they are often implemented to run in

realtime, Smcmodels are often used in score-following applications.

• With fingerprint clustering, k-nearest neighbor classification is used to match

individual audio fingerprints (short, often reduced excerpts of an audio file)

from one recording to fingerprints created from another recording. The time

of the closest match from the second recording is then mapped to the time of

the query fingerprint from the first recording.

Specific applications of each algorithm to audio-to-audio alignment applications

are included in Table 2.1, following the summary of research presented by Sec-

tion 2.3.

2.2.2 Feature selection

Feature selection is critical to the success of any audio analysis task, and alignment

is no exception: the type of features selected for alignment need to relate to the

musical content that forms the underlying link between the versions. For example,

if two recordings contain the same melody played by two different instruments, the

features chosen for their alignment need to emphasize pitch while de-emphasizing

timbre. If two recordings contain a similar rhythmic pattern that is to be aligned, but

those patterns are played on different pitches or by different instruments, features

chosen for the recordings’ alignment need to emphasize note onsets while being

pitch- and timbre-invariant.

Feature extraction is the conversion of a waveform into sequential frames of

single- or multi-dimensional feature vectors. Frames are generally of uniform size,

and are often overlapped in order to increase feature resolution. Some alignment

applications, however, use mid-level features in which each frame encompass an

entire note event, beat, or even bar. Using beat-based features can reduce a nonlinear

alignment problem to a linear one, so they are often used in version identification

of popular music (Ellis and Cotton 2007). Event- and beat-based features require a

preprocessing step to determine where each event begins and ends (called segmen-

tation) and are thus dependent on the quality of the segmentation algorithm.

Audio features used for audio-to-audio alignment are of several varieties:

• Spectral features, as in the Short-time Fourier transform (Stft) features of

spectrograms, describe the frequency content in terms of both magnitude and

phase of each frame of the signal. Full spectral feature vectors are often reduced
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to a smaller number of features through grouping the original frequency range

of a short-time Fourier transform (Stft) into a smaller number of frequency

bands that encompass frequency ranges of particular interest; the highest and

lowest frequencies are sometimes thrown out altogether.

• Pitch-based features like fundamental frequency (F0) correspond to frequen-

cies associated with pitched musical notes. They are often calculated in the

frequency domain, as by binning Stft features around those pitch frequencies,

as well as in the time domain, by means of signal filtering (as for peak structure

distance (Psd) features).

• Chroma features, also called chroma pitch features, take advantage of octave

equivalency (the perceptual similarity of notes an octave apart) to collapse an

entire frequency range into a single octave. This octave often consists of the

twelve equal-tempered semitone pitch classes of Western music notation (A,

A]/B[, B, . . . , G]/A[).3 A number of chroma variants have been introduced,

to reduce and normalize timbral differences while preserving pitch content.

Variants used in audio-to-audio alignment include binary chroma (Nagano

et al. 2002), the harmonic pitch class profile (Gómez 2006), chroma energy

distribution normalized statistics (Müller et al. 2005a), and chroma discrete

cosine transform (Dct)-reduced log pitch (Muller et al. 2009).

• Timbre-based features attempt to eliminate fundamental periodicity (pitch)

from the audio while preserving spectral structural features (e.g., formants), in

order to approximate the human auditory response. Timbre features are often

based on perceptual scales; the nonlinear Mel-scale (Stevens et al. 1937) and

the Bark scale, which corresponds to 24 critical bands of perception (Zwicker

1961), have both been used for audio-to-audio alignment.4 Common timbre-

based features include Mel-frequency cepstral coefficients (Mfccs), which are

also favoured in the field of speech processing.

• Onset-based features emphasize the onset of events in a performance, often

through taking the first-order difference between successive frames of other

feature vectors. In this way, onset-based features can capture pitch or chroma

3Smaller divisions of the octave have been used; for example, Martin et al. (2012) divided the
octave into 36 bins, thereby capturing a 1/3 semitone resolution.

4The Bark scale has been replaced in psychoacoustics by a more up-to-date measure of critical
bandwidth, the equivalent rectangular bandwidth (Erb). To the best of our knowledge, however, the
Erb has not yet been used as a feature for audio-to-audio alignment.



18 Literature review

features as well as onsets, as in decaying locally adaptive normalized chroma-

based onset features (Ewert and Müller 2009; Ewert et al. 2009)—another

chroma variant.

Multiple features are often combined into a single feature vector, either by

concatenating the different feature vectors (as in Jehan 2005) or, as when using Dtw,

by summing multiple similarity matrices, each created individually by different

features extracted from the same audio (as in Dixon and Widmer 2005).

Specific usage of each feature in audio-to-audio alignment applications are

included in Table 2.1, following the summary of research presented by Section 2.3.

Good features for audio-to-audio alignment

Several papers compare the performance of different features for audio-to-audio

alignment (Hu et al. 2003; Turetsky and Ellis 2003; Müller et al. 2006; Basaran et al.

2011; Duan and Pardo 2011). Pitch-, chroma-, and onset-based features have been

found to yield better alignment results than timbre-based features. Although pitch

tends to slightly outperform chroma features, both pitch and chroma perform well

(Hu et al. 2003; Duan and Pardo 2011). In general, chroma and chroma variants are a

popular feature choice for audio-to-audio alignment, as they capture the “harmonic

progression of the audio signal” (Müller et al. 2005a).

In a study on feature optimization for audio-to-audio alignment, Kirchhoff and

Lerch (2011) found that combining multiple features, such as chroma and onset,

tended to improve the robustness and accuracy of alignment. Weighting individual

features also significantly improved results in some cases. This study highlighted the

importance of selecting features based on the specific alignment application and the

audio being aligned.

2.3 Audio-to-audio alignment research

Since its first appearance in 2001, audio-to-audio alignment has been used for a wide

range of musical tasks. These tasks fall under two categories: similarity-based tasks

and synchronization-based tasks. Similarity-based tasks (Section 2.3.1) use audio-to-

audio alignment as a means to an end: to improve the measure of overall similarity

(melodic, timbral, or otherwise) between two recordings. Much as in spoken word

recognition, similarity-based tasks often involve determining if two recordings have

the same underlying content, for example to determine if they contain different
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performances of the same musical score. In contrast, synchronization-based tasks

(Section 2.3.2) make use of the alignment mapping generated by the algorithm.

Often, this alignment mapping is used to synchronize one recording to others for

playback, sequentially or simultaneously. Sequential playback involves playing only

one of the synchronized recordings at a time, but maintaining the current playback

position in the event timeline when jumping between them. Simultaneous playback

involves playing the synchronized recordings at the same time, after first distorting

the timelines of the recordings so that they all have an identical event timeline and

using a technique like phase vocoding to preserve pitch content despite the temporal

distortion. Both similarity- and synchronization-based tasks are included in the

following literature review.

The scope of the research included in this review is limited to works in which the

alignment is performed algorithmically, rather than by hand (as in Sapp 2007), and

works in which audio is aligned to other audio, rather than to symbolic music. Any of

the following works that do take symbolic scores as input convert the symbolic input

to audio feature vectors before sending it to the alignment algorithms, so that the

alignment algorithms only ever receive input in audio feature form. This conversion

is performed in one of two ways: either by directly converting the symbolic notes into

feature vectors based on the pitch of a note, with or without its known harmonics (Hu

and Dannenberg 2005; Kurth et al. 2007; Duan and Pardo 2011), or by first sonifying

the score (synthesizing audio from it) and extracting feature vectors as for a regular

recording. Tools available for sonification include Timidity5 and the Midi Toolbox

for Matlab,6 among others.7

All research cited below is summarized in Table 2.1 at the end of the section.

2.3.1 Similarity-based tasks

Most similarity-based audio-to-audio alignment tasks focus on content-based music

retrieval, in which a query recording (either an excerpt or a full recording) is used to

search and return similar recordings from a database. Grosche et al. (2012) provide

an overview of content-based music retrieval systems, and Skopal and Bustos (2011)

provide an overview of general database query techniques for audio and symbolic

music retrieval.

5www.onicos.com/staff/iz/timidity/index.html
6www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox
7www.wikipedia.org/wiki/List_of_MIDI_editors_and_sequencers

www.onicos.com/staff/iz/timidity/index.html
www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox
www.wikipedia.org/wiki/List_of_MIDI_editors_and_sequencers
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Content-based music retrieval tasks are often grouped into three classes: audio

identification, audio matching, and version identification (Grosche et al. 2012).

High-specificity retrieval, called audio identification, is used to find matches iden-

tical to the query. Mid-specificity retrieval, called audio matching, is used to find

near-duplicates of a given query, with results that may include some variation in

musical properties including tempo, rubato, dynamics, phrasing and articulation,

instrumentation, and harmonization. Low-specificity searches, called version identi-

fication, return recordings that are even less similarly related to the query in regards

to the above musical properties than for audio matching.

Audio identification

Audio identification involves identifying an unknown audio query by comparing it

to a database of known recordings; audio-to-audio alignment is used to improve

this identification. Yang (2001) performed audio identification with a database of

modern and Western classical works, and Hu et al. (2003) used audio queries from

albums by the Beatles to search a (sonified) Midi database, in one of the most widely

cited papers on audio-to-audio alignment. Sanguansat (2012) proposed a Msa-based

query-by-humming system. (Query-by-humming tasks are identification tasks in

which the query is a recording of a melody sung by a user.)

Audio matching

Audio matching, also called work recognition, is a form of audio identification that

includes finding items “similar to” the query recording. The recordings sought

are often originally performed from the same score, so that the variations between

them are limited to tempo, rubato, and dynamics (with notes and instrumentation

constant across the different performances). Nagano et al. (2002) used audio-to-

audio alignment to improve similarity between results when querying a database

for transpositions, re-instrumentations, and re-takes of an audio query; Müller

et al. (2005a, 2005b) used short audio excerpts to search a database for alternate

recordings of Western classical works, as did Camarena-Ibarrola and Chávez (2006).

Version identification

Version identification, also called cover song identification, broadens audio matching

to include “semantically motivated variations as they typically occur in different

interpretations of a piece of music” (Kurth and Müller 2008).
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A number of version identification works have sought to identify cover songs

of popular music. Ellis and Poliner (2007) searched for covers of modern popular

music in a database that included recordings of live performances and had the top-

performing system in the 2006 Music Information Retrieval Evaluation eXchange

(Mirex) audio cover song identification competition.8 Serrà and Gomez (2007) and

Serrà et al. (2008) also used audio-to-audio alignment for cover song identification;

the former was the top-performing system in the 2007 Mirex cover song identifica-

tion competition. Serrà et al. (2009) expanded on this work with an Rqa-based cover

song detection model. Martin et al. (2012) searched the Million Song Dataset (Msd),

a large database of popular music, for cover songs. Each of these research groups

implemented key-invariant systems—systems that successfully identify versions of

the query recording that have been transposed to other musical keys.

Other version identification systems that make use of audio-to-audio alignment

are designed for music research. Antonopoulos et al. (2007) matched and ranked the

similarity between rhythmic signatures extracted from traditional Greek, Rwandan,

and Congolese music in order to find other recordings with those rhythmic signa-

tures. Niedermayer et al. (2011) detected different versions of 18th- and 19th-century

music played by historical musical automata—among them, music boxes and flute

clocks. Ross et al. (2012) detected motifs in Hindustani vocal music compositions

(Bandish), both within and across different performances, by computing similarity

measures of aligned audio segments. Bohak and Marolt (2012) bypassed a need for

traditional symbolic transcriptions and scores when calculating similarity measures

between candidate musical stanzas from field recordings of vocal folk songs, through

pairwise alignment of these stanzas.

2.3.2 Synchronization-based tasks

As discussed above, synchronization-based tasks make use of the alignment path

between the recordings itself, not just the overall measure of how similar the

recordings are post-alignment. This alignment path is often exploited for both

performance tracking, the time-linking of a recording to a score or other recording,

and performance analysis, in which different performances are aligned for the

purpose of analyzing differences and similarities among them, as for motif detection.

Depending on the algorithm employed, synchronization can happen in realtime

8
Mirex is an annual competition for solving music information retrieval (Mir) tasks using

standardized evaluation frameworks (Downie 2008).
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(online alignment) or not (offline alignment).

Synchronization-based audio-to-audio alignment research, grouped by task is as

follows, grouped by task: audio-score alignment, joint structure analysis, multi-

modal browsing, performance analysis, and studio engineering.

Audio-score alignment

Audio-score alignment, alternatively called performance-score alignment or score-

following when in realtime, maps an audio performance to a symbolic score. On

sonified symbolic scores, general audio-to-symbolic alignment research for offline

alignment to scores has been carried out by Meron and Hirose (2001), Orio and

Schwarz (2001), Dannenberg and Hu (2003), Devaney et al. (2009), and Niedermayer

and Widmer (2010). General audio-to-symbolic alignment research for online align-

ment to scores has been carried out by Dixon (2005b), Dixon (2005a), Camarena-

Ibarrola and Chávez (2010), Montecchio and Cont (2011a), Duan and Pardo (2011),

Carabias et al. (2012), and Xiong and Izmirli (2012). Additional research featuring

audio-score alignment as an internal step but not the end goal will be noted in later

sections.

Alignment for multimodal browsing

Multimodal alignment involves synchronizing multiple modes of music (e.g., audio,

symbolic, and/or lyrics if applicable) to facilitate user interaction and browsing.

Often, the various modes and/or different versions of a piece and its performances

are linked to ensure consistent browsing of all versions at the same time. During

playback, it is then possible to jump between these versions without pausing the

underlying timeline.

The SyncPlayer is one audio-to-audio alignment-based multimodal music inter-

face (Kurth et al. 2005). Within the SyncPlayer framework, Müller et al. (2006)

worked to speed up audio-to-audio alignment for performance synchronization,

to facilitate faster performance browsing. The SyncPlayer has also been used to

perform image-audio synchronization: a scanned image of a musical score taken

as input is aligned both to audio recordings of that score and to its symbolic score,

as extracted from the image through optical music recognition (Omr) (Kurth et al.

2007; Fremerey et al. 2008; Fremerey et al. 2009). In this way, recordings are linked

to specific pixels in the image, so that during playback the time in the audio is tracked

in the image of the score.
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Joint structure analysis

Joint structure analysis involves studying the similarities and differences in musical

structure between two recordings of the same underlying piece that have variations

in global structure; for example, one recording may contain more verses or longer

cadenzas than another. Joint structure analysis involving audio-to-audio alignment

usually makes use of partial alignment, as in Müller and Appelt (2008) and Müller

and Ewert (2008). Ewert et al. (2009) used audio-to-symbolic alignment to identify

both frequently varied and usually stable (unvaried) passages in a collection of

musical recordings by the Beatles. Tabus et al. (2012) presented a general method

for finding and aligning similar segments within a song.

Performance analysis

Performance analysis, also called expressive performance extraction, is the analysis

of different interpretations of a piece. As discussed by Devaney et al. (2011),

automated performance analysis is still a relatively young musicological subfield.

Audio-to-audio alignment has been used to analyze and compare electroacoustic

music (Orio and Zattra 2007) as well as to assist in automatic extraction of harmonic

information and to find “harmonically stable” musical passages in cover songs (Konz

and Müller 2012).

Similarly, a number of performance analysis tasks use audio-to-symbolic align-

ment to facilitate segmentation of audio into notes or phrases, or to assist in further

score-based audio analysis: creating a database of Midi transcriptions, to later

be used as training data for transcription algorithms (Turetsky and Ellis 2003);

facilitating the segmentation of audio into small units to be used in a sound synthesis

system (Schwarz 2003); estimating note boundaries, as a first step in automating

audio segmentation (Hu and Dannenberg 2005); segmenting field recordings of

vocal folk songs into stanzas (Müller et al. 2009); investigating asynchronies in

alignment of polyphonic a cappella vocal recordings to scores (Devaney and Ellis

2009); studying differences in tempo, key, tuning, and melody between stanzas in

field recordings of vocal folk songs (Müller et al. 2010); for studying the intonation

in singers (Devaney et al. 2011); and as a first step in source separation (identifying

and isolating a particular musical line from a polyphonic mix) (Ewert and Müller

2012).
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Studio engineering

There are several studio engineering tasks that use audio-to-audio alignment to

automate or semi-automate laborious tasks normally performed by music producers

and audio engineers. Dannenberg (2007) used audio-to-symbolic alignment to an-

notate notes and facilitate other studio engineering tasks like balancing instrument

levels in the Intelligent Audio Editor (Iaed) environment. Basaran et al. (2011)

proposed a method for aligning multiple fragments of a single performance recorded

on different microphones with different quality levels, as when multiple recordings

are taken by different people at the same concert. Montecchio and Cont (2011b)

aligned multiple takes of a musical recording to the full performance, a tedious but

critical task sound mixing engineers frequently perform. Gerber et al. (2012) aligned

cover songs recorded as multitrack source mixes to original audio to aid in source

separation.

Audio fingerprint alignment

Audio-to-audio alignment has also been applied to audio fingerprints—unique

feature sets derived from short excerpts of recordings used in audio matching.

Harte (2010) aligned fingerprints to their counterparts in an evaluation database,

to prevent asynchronies between the original, timing-critical metadata annotations

created for audio in the database and the local copies of those same recordings.

Ramona and Peeters (2011) matched purposefully distorted fingerprint queries to

an audio database to check for fingerprint mismatches.

2.3.3 Application-agnostic audio-to-audio alignment

The remainder of audio-to-audio alignment research focuses on alignment for music-

related tasks in general, and neither focuses on nor demonstrates a particular use-

case.

To investigate the effects of feature selection given different types of acoustic

similarity (timbre, rhythm, and pitch) between recordings, Jehan (2005) sonified a

score with systematic differences in timbre, rhythm, and pitch, and then compared

these recordings to one another. To study the systematic effects of varying algorithms

(cross-correlation versus Dtw) and algorithmic parameters (chroma resolution and

similarity, transposition, beat tracking, and Dtw constraints), Serrà et al. (2008) re-

implemented the works of Ellis and Poliner (2007) and Serrà and Gomez (2007) for

cover song identification in a collection of commercial songs of different musical
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genres. Ewert et al. (2009) and Ewert and Müller (2009) investigated feature

optimization for synchronizing of polyphonic music. Thomas et al. (2012) sped up

audio matching in a database of Western classical music by segmenting all the audio

into equal-sized, overlapping segments and then precomputed and stored their Dtw

similarity.

Table 2.1 summarizes the research from this section, along with the algorithms

and features implemented by each.
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Table 2.1: Research on audio-to-audio alignment of music

Algorithmi

(? = online)
Featuresii Frame [Overlap]iii

[ms]
Musical inputiv

[s]

Audio identification

Yang (2001) Dtw Onset 46 [50%] A30–60 ⇔ A30–60

Hu et al. (2003) Dtw Chroma, Pitch,
TimbreMfcc

250 [0%] A ⇔ S

Sanguansat (2012) M-Dtw Pitch contour Event [Na] A10 ⇔ A10 (multiple)

Audio matching

Nagano et al. (2002) Dtw ChromaB Beat [0%] A ⇔ A19

Müller et al. (2005a) Dtw Chroma
Cens 4100 [76%] A,S ⇔ A10–30

Müller et al. (2005b) Dtw Chroma
Cens 4100 [76%] A,S ⇔ A10–30

Camarena-Ibarrola and Chávez (2006) ?Dtw Onset
B+Bark 1500 [50%] A ⇔ A

Version identification

Ellis and Poliner (2007) Cc Chroma Beat [0%] A ⇔ A

Serrà and Gomez (2007) Dtw Chroma36 93 [50%] A ⇔ A

Antonopoulos et al. (2007) Dtw Timbre
Ch+Mfcc 93 [88%] A,Aseg ⇔ A,Aseg

Serrà et al. (2008) Dtw Chroma12,24,36 93 [50%] A ⇔ A

Serrà et al. (2009) Crp Chroma
Hpcp 464 [0%] A ⇔ A

Niedermayer et al. (2011) Dtw Chroma 4096 x [75%] A25 ⇔ A25

Ross et al. (2012) Dtw Pitch 10 [Na] Aseg ⇔ Aseg

Martin et al. (2012) Blast Chroma36 743 [50%] A ⇔ A

Ibid. Blast Chroma 80–300 [0%] A ⇔ A

Bohak and Marolt (2012) Dtw Chroma 50 [Na] Aseg ⇔ Aseg

Audio-score alignment

Orio and Schwarz (2001) Dtw PitchPsd Na A ⇔ S

Meron and Hirose (2001) Dtw Pitch 45 [67%] A ⇔ S

Dannenberg and Hu (2003) Dtw Chroma 250 [0%] A ⇔ S

Dixon (2005a) ?Dtw Onset 20 [0%] A ⇔ A

Dixon (2005b) ?Dtw OnsetPitch 46 [57%] A ⇔ A

Devaney et al. (2009) HmmDtw PitchPsd 10 [7%] A ⇔ S

Camarena-Ibarrola and Chávez (2010) ?Fc OnsetBark 185 [75%] A ⇔ A0.185

Niedermayer and Widmer (2010) Dtw Chroma 4095 x [25%] A ⇔ S

Duan and Pardo (2011) ?Smc Pitch, Chroma 46 [78%] A ⇔ S

Continued on the following page.
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Table 2.1 – Continued

Algorithmi

(? = online)
Featuresii Frame [Overlap]iii

[ms]
Musical inputiv

[s]

Montecchio and Cont (2011a) ?Smc Na Na A ⇔ A,S

Carabias et al. (2012) ?Dtw Na Na A ⇔ S

Xiong and Izmirli (2012) ?Smc Chroma Na A ⇔ A

Joint structure analysis

Müller and Appelt (2008) Dtw Chroma
Cens 1000 [Na] A ⇔ A

Müller and Ewert (2008) Dtw Chroma
Cens 1000 [Na] A,S ⇔ A,S

Ewert et al. (2009) Dtw Chroma 500 [Na] A ⇔ S

Tabus et al. (2012) Hmm ChromaB 2048 x [25%] A ⇔ A

Multimodal browsing

Müller et al. (2006) Dtw Chroma
Cens 100–9000 [Na] A ⇔ A

Kurth et al. (2007) Dtw Chroma Na A ⇔ Omr

Fremerey et al. (2008) Dtw Chroma
Cens 1000 [Na] A ⇔ Omr,Sseg

Fremerey et al. (2009) Dtw Chroma Na A ⇔ Omr

Performance analysis

Schwarz (2003) Dtw PitchPsd Na A ⇔ S

Turetsky and Ellis (2003) Dtw Fft, Onset,
Fft+Onset

93 [50%] A ⇔ S

Hu and Dannenberg (2005) Dtw Chroma 50 [0%] A ⇔ S

Orio and Zattra (2007) Dtw Fft Na A ⇔ A

Müller et al. (2009) Dtw Chroma
Cens 100 [Na] A ⇔ S

Devaney and Ellis (2009) Dtw PitchPsd Na A ⇔ S

Müller et al. (2010) Dtw ChromaB+Pitch 100 [Na] Aseg ⇔ Sseg

Devaney et al. (2011) HmmDtw Na Na A ⇔ A

Konz and Müller (2012) Dtw Chroma Beat, Bar [Na] A ⇔ S

Ewert and Müller (2012) Nav
Na Na A ⇔ S

Studio engineering

Dannenberg (2007) Dtw Chroma 5 [Na] A ⇔ S

Montecchio and Cont (2011b) Smc Na Na A ⇔ A15

Basaran et al. (2011) Gm FftBark,
Onset

Bark

25 [0%] A2–60 (multiple)

Gerber et al. (2012) Navi
Na Beat [Na] A ⇔ A

Continued on the following page.
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Table 2.1 – Continued

Algorithmi

(? = online)
Featuresii Frame [Overlap]iii

[ms]
Musical inputiv

[s]

Audio fingerprint alignment

Harte (2010) ?Cc WaveformB 1 x [0%] A ⇔ A0.0045

Ramona and Peeters (2011) Fc TimbrednSTFT 2000 [98%] A ⇔ Aseg

Application-agnostic alignment

Jehan (2005) Dtw Chroma+FftBark

+Timbre
Events, Beats [Na] Aseg ⇔ Aseg

Ewert et al. (2009) Dtw Chroma, Onset
Ch,

Chroma+Onset
Ch

20 [Na] A ⇔ S

Ewert and Müller (2009) Dtw Chroma, Onset
Ch,

Chroma+Onset
Ch

20 [0%] A ⇔ S

Thomas et al. (2012) Dtw ChromaCrp 1000 [0%] A ⇔ A25–125

General notes: Na means the information was not given. Works cited twice in the chapter are listed with their
first appearance. Only pertinent problems are included in the table; for example, Ewert et al. (2009) uses both
Dtw and Dp-based partial-alignment algorithms, but only Dtw is included in this table as partial-alignment
strategies are beyond the scope of this thesis.
i Notes on algorithms: Abbreviations are as follows: Cc is cross-correlation; Crp are cross recurrence plots;
Fc is fingerprint clustering; Gm are general generative models; M-Dtw is multi-dimensional Dtw; and Smc

is the sequential Monte Carlo method. For Hmms, a subscript specifies the initialization prior, if given. These
algorithms are discussed in Section 2.2.1.
ii Notes on features: Abbreviations are as follows: B are binary features, Bark indicates features that are based on
the Bark perceptual scale; Cens are chroma energy distribution normalized statistics; Ch are generic chroma; Crp
are chroma discrete cosine transform (Dct)-reduced log pitch features; dnStft is double-nested Stft; Hpcp are
harmonic pitch class profile; Mfcc are Mel-frequency cepstral coefficients; and Psd are peak structure distance.
Subscripted numbers indicate the number of Fft bands or bins used; in the case of chroma features, subscripted
numbers are the number of chroma bins per octave (default is twelve). Onsets are Fft-based unless otherwise
indicated (e.g., OnsetCh are chroma-based onsets). Different types of features used independently in the same
paper are separated by commas. Plus signs indicate multiple variants of a single feature type (e.g., Onset

B+Bark

means binary onset features based on the Bark scale). These features and feature variants are discussed in
Section 2.2.2.
iii Notes on frame: The overlap between subsequent frames is given in brackets. Values with “ x” are measured in
number of samples rather than in milliseconds. Where frame length is given but overlap is Na, it is likely that
zero overlap was used but not explicitly stated.
iv Notes on musical input: Musical input indicates the type of inputs to the problem, before conversion to audio
(in the case of symbolic or image): Ameans audio, Smeans symbolic, and Omrmeans image. Excerpt duration
is given (in seconds) as subscript; if no duration is given, the full duration of the recording was used—“seg”
indicates an excerpt of unspecified duration.
v Cited method of Ewert et al. (2009).
vi Used the commercial software Beat Detective (see section 2.4.1).
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2.4 Software for aligning musical recordings

To conclude the chapter, this section briefly covers both commercial and non-

commercial software (libraries, toolkits, and standalone programs) designed for

automated alignment of musical audio. Programs that are intended for generic signal

alignment are not included,9 nor are programs that rely on hand-annotation of every

event or beat to be aligned in the recordings,10 or programs that do not account

for nonlinear timeline transformations, such as software that compensates for linear

timeline shifts created by microphone delays when recording.11 The algorithm and

features used by each program are summarized in Table 2.2.

2.4.1 Commercial software

Three commercial software products are designed to align musical audio with

underlying timelines that are potentially nonlinearly related. Zplane’s Audio-to-

Audio Alignment Kit (AtAAK!), advertised for musical audio-to-audio timing adjust-

ment as well as alignment of overdubbed-to-original speech, uses user-determined

combination of pitch, timbre, loudness, and onset times to time-align two files, then

time-stretches one signal to synchronize with the other.12 VocALign, by Synchro

Arts, is designed to align pairs of vocals (lead or backing), instrumental, and dialogue

tracks.13 Beat Detective, a feature in Avid’s digital audio workstation software Pro

Tools, detects the beats in each audio file input and then shifts the beats of one to

line up with the beats of another.14

2.4.2 Non-commercial software

Several non-commercial, open-source programs for audio-to-audio alignment also

exist. A feature-agnostic Matlab script for offline Dtw between two audio files has

been made available, along with a script for performing audio-to-symbolic alignment

9E.g., data-agnostic alignment tools like basic Dtw implementations: www.wikipedia.org/wiki/
Dynamic_time_warping#Open_Source_software.

10E.g., the AudioSnap feature of Cakewalk’s SONAR X2 post-production software, which requires
human beat annotation: www.cakewalk.com/Products/SONAR/).

11E.g., SoundRadix’s delay-based Auto-Align, a production VST plug-in: www.soundradix.com/

products/auto-align).
12www.zplane.de/index.php?page=description-ataak
13www.synchroarts.com/index.php?PAGEID=products&ID=vocalign
14www.avid.com/US/products/Pro-Tools-Software/features

www.wikipedia.org/wiki/Dynamic_time_warping#Open_Source_software
www.wikipedia.org/wiki/Dynamic_time_warping#Open_Source_software
www.cakewalk.com/Products/SONAR/
www.soundradix.com/products/auto-align
www.soundradix.com/products/auto-align
www.zplane.de/index.php?page=description-ataak
www.synchroarts.com/index.php?PAGEID=products&ID=vocalign
www.avid.com/US/products/Pro-Tools-Software/features
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(Ellis 2003; Ellis 2008; as introduced in Turetsky and Ellis 2003).15,16 Scorealign,

an alignment implementation that has since been incorporated into the Port Media

project, performs both audio-to-audio and audio-to-symbolic alignment; it is avail-

able in the form of Matlab scripts and also as a feature in the experimental branch

of open-source audio editor Audacity.17,18,19,20 The Automated Music Performance

Analysis and Comparison Toolkit (Ampact) is an audio-to-symbolic Matlab toolkit

tailored for performance comparison of vocal audio (Devaney et al. 2009; Devaney

2011; Devaney et al. 2011), which allows the user to choose between Dtw and Hmm

algorithms and incorporates the Matlab scripts for Dtw introduced above (Ellis

2008).21 SyncPlayer, the multimodal browsing software introduced in Section 2.3.2,

is available as a standalone alignment program (Kurth et al. 2005).22 Finally, the

Music Alignment Tool CHest (Match) aligns multiple recordings through iterative

pairwise alignment, by arbitrarily picking one reference track and aligning each of

the other recordings to that reference (Dixon 2005b; Dixon and Widmer 2005).23 In

addition to the standalone program, Match is available as a Vamp plug-in for use

with Sonic Visualiser, Audacity 2, and Sonic Annotator.24,25,26,27

15www.ee.columbia.edu/~dpwe/resources/matlab/dtw/
16www.labrosa.ee.columbia.edu/matlab/alignmidiwav
17www.cs.cmu.edu/~music/alignment/
18www.sourceforge.net/apps/trac/portmedia/wiki
19www.audacity.sourceforge.net/
20www.wiki.audacityteam.org/wiki/Experimental_Features
21www.ampact.org
22www-mmdb.iai.uni-bonn.de/projects/syncplayer/download.php
23www.eecs.qmul.ac.uk/~simond/match/
24www.vamp-plugins.org/download.html
25www.sonicvisualiser.org
26www.audacity.sourceforge.net/download/features-2.0
27www.omras2.org/sonicannotator

www.ee.columbia.edu/~dpwe/resources/matlab/dtw/
www.labrosa.ee.columbia.edu/matlab/alignmidiwav
www.cs.cmu.edu/~music/alignment/
www.sourceforge.net/apps/trac/portmedia/wiki
www.audacity.sourceforge.net/
www.wiki.audacityteam.org/wiki/Experimental_Features
www.ampact.org
www-mmdb.iai.uni-bonn.de/projects/syncplayer/download.php
www.eecs.qmul.ac.uk/~simond/match/
www.vamp-plugins.org/download.html
www.sonicvisualiser.org
www.audacity.sourceforge.net/download/features-2.0
www.omras2.org/sonicannotator
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Table 2.2 Audio-to-audio alignment software

Developer Application Algorithm
(? = online)

Features

Commercial

Audio-to-Audio Alignment Kit
(AtAAK!)i

zplane C/C++ library Na Loudness, timbre,
pitch, and/or onsets

Pro Tools Beat Detectiveii Avid Standalone Na Na

VocALigniii Synchro Arts Plug-in or standalone Na Na

Open source

Automated Music Performance
Analysis and Comparison
Toolkit (Ampact)vi

Devaney et al.
(2009)

Matlab toolkit Hmm, Dtw Pitch
Psd

Dtw for audioiv Ellis (2003) Matlab script Dtw Agnostic

Music Alignment Tool CHest
(Match)vii,viii

Dixon (2005b) Standalone (Gui, Cli),
Vamp plug-in

?Dtw Stft, Onsets

scorealignix Hu et al. (2005) C++ (Api, Cli) Dtw Chroma

scorealign (original)x Hu et al. (2005) Matlab script Dtw Chroma

SyncPlayer xi Kurth et al.
(2005)

Standalone (Gui) Dtw Chroma

Note: Nameans the given specification is unavailable.

i www.zplane.de/index.php?page=description-ataak
ii www.avid.com/US/products/Pro-Tools-Software/features
iii www.synchroarts.com/index.php?PAGEID=products&ID=vocalign
iv www.ee.columbia.edu/~dpwe/resources/matlab/dtw/
v www.labrosa.ee.columbia.edu/matlab/alignmidiwav
vi www.ampact.org
vii www.eecs.qmul.ac.uk/~simond/match/
viii www.vamp-plugins.org/download.html
ix www.cs.cmu.edu/~music/alignment/
x www.portmedia.sourceforge.net/
xi www-mmdb.iai.uni-bonn.de/projects/syncplayer/download.php

www.zplane.de/index.php?page=description-ataak
www.avid.com/US/products/Pro-Tools-Software/features
www.synchroarts.com/index.php?PAGEID=products&ID=vocalign
www.ee.columbia.edu/~dpwe/resources/matlab/dtw/
www.labrosa.ee.columbia.edu/matlab/alignmidiwav
www.ampact.org
www.eecs.qmul.ac.uk/~simond/match/
www.vamp-plugins.org/download.html
www.cs.cmu.edu/~music/alignment/
www.portmedia.sourceforge.net/
www-mmdb.iai.uni-bonn.de/projects/syncplayer/download.php
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3—Applying the Cpm to musical audio

T his chapter covers the algorithm at the heart of this thesis: the continuous

profile model (Cpm). The Cpm is a generative Markovian model, designed to

simultaneously normalize and align multiple related time-series signals (Listgarten

et al. 2005; Listgarten 2007). Alignment with the Cpm has been used in a variety

of applications. Signals from liquid chromatography–mass spectrometry (Lc–ms),

a chemistry technique used to identify biological components in a mixture, have

been aligned and compared in order to detect the presence or absence of specific

proteins in human serum (Listgarten et al. 2006). Signals pertaining to behavior,

such as movement tracking in video recordings, have been aligned in order to

find and recognize behavior deviations in persons with bipolar disorder (Amor and

James 2010). Most recently, alignment of movement data has been used to optimize

grasping motions in robots (Wang 2012). Although the Cpm has been used to align

audio recordings of speech, in a proof-of-concept in its introductory publication

(Listgarten et al. 2005), to the best of our knowledge it has not previously been

used to align audio recordings of music.

The Cpm algorithm is explained in Section 3.1; audio-to-audio alignment with

the Cpm is implemented in Section 3.2.

3.1 The Cpm algorithm

The Cpm is a generative model that operates under the assumption that each of the

input time-series signals is a noisy, timeline-warped version of a common underlying

signal—the latent trace. In other words, each input signal is a non-uniformly

subsampled version of the latent trace, with local (amplitude) rescaling and the

addition of noise. The latent trace acts as a reference timeline to link all of input

signals to one another, as each point on the latent trace maps to a sample (or

multiple samples) in each of the original signals. The latent trace does not necessarily
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have a consistent sample rate at all, and the sample rate of the latent trace has no

meaningful relation to the sample rate of any of the input recordings: it is merely a

way to map among them.

The Cpm can be considered to be an Hmm with an additional set of parameters

that are related to the latent trace. In general, an Hmm is a statistical model for

situations in which an unobservable, hidden stochastic process is observable through

a second stochastic process that produces a sequence of observations. In the case

of time-series signals, these observations are the signal’s features. An Hmm is

characterized by five parameters: the number of hidden states in the model, the

number of possible kinds of observations for each state, the probability distribution

for transitioning from each state to any other state (the state transition probability

distribution), the observation symbol probability distribution for each state, and the

initial state distribution.

In the Cpm, hidden states contain both a time component and a scale component.

The time component controls how an input signal relates to the time steps in the

latent trace, which in turn serves to link all input signals to a single latent trace.

The scale component controls how the amplitude of each state in an input signal is

scaled in relation to the latent trace, which accounts for amplitude variation across

all input signals and within a single input signal. While a multiclass variant of the

Cpm, the hierarchical Bayesian continuous profile model (Hb-Cpm), has been made

available, this thesis focuses on the basic, single-class Cpm—more specifically called

the expectation maximization-Cpm (Em-Cpm).

Listgarten (2007), the Cpm’s developer, likens the Cpm to a fancy tape player:

It can be helpful to draw an analogy between generating an observed

time series in the Cpm and playing an audio cassette tape in a special

type of tape player which in addition to the regular volume knob, also

has a ‘speed’ knob. When playing a tape in this machine, one can keep

one hand on each knob, controlling both the speed at which the audio

is played, and also the volume at which it is played. Similarly, one can

think of the generative process of a Cpm as having a ‘speed’ knob and

an ‘amplitude’ knob. When generating a single observed time series in

a Cpm, one can change either knob, or both at once. When the speed is

increased (by moving more quickly through latent time with the hidden

time states), less of the underlying latent trace will be represented in the

observed time series, and when the speed is decreased (by moving more
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slowly through latent time), more of that portion of the latent will be

represented in the observed time series. The observed signal emitted at

a particular latent time point is scaled by a factor proportional to the

setting on the amplitude knob.

Following this analogy, a group of similar signals, such as different versions of the

same song, can be considered to have been created using the same ‘tape,’ but played

back with different, varying values of speed and amplitude for each version—not to

mention different amounts of background noise.

Alignment using the Cpm is executed in two stages: in the training stage,

parameters for the Cpm (and therefore the latent trace) are learned from the original

input signals; in the alignment extraction stage, each original input signal is pairwise

aligned to this newly modeled latent trace.

3.1.1 Training

During training, Cpm parameters, including those of the latent trace, are learned

from the input signals through the expectation-maximization algorithm (Em). Em is

an unsupervised parameter-estimation method for iteratively improving the param-

eters that characterize a statistical model (Dempster et al. 1977): a model is first

calculated from input parameters, and then improved, performance-maximizing

parameters are calculated for that model. This estimation and maximization is

then repeated using each newly maximized set of parameters, until either a best-

fit threshold has been crossed or a predetermined maximum number of iterations

have been performed.

Input signals can be single- or multi-dimensional, although all signals must have

features with the same number of dimensions. Along with the latent trace, outputs

from this training step include the Markovian transition probabilities for both the

hidden scale and time states, as well as a global scaling factor and a noisiness level

for the observed input signals.

3.1.2 Alignment extraction

During the alignment extraction stage, each of the original input signals is individ-

ually aligned to the timeline of the latent trace. This alignment is performed with

Viterbi alignment, a dynamic programming technique used to find the best state
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sequence through a stochastic model (such as the the Cpm of the latent trace) for a

given observation sequence, the input signal.

The output from this step is in the form of a mapping from each sample in the

input signals to the samples of the latent trace. The resultant mapping among all

signals is therefore in latent time, which is not independently meaningful as it has

neither a real-world relationship to the timing of any one particular input signal nor

a fixed sampling rate.

3.2 Musical implementation

The main consideration when applying the Cpm to music is feature choice. The Cpm

is generalized to take any set of time-series sequences as input, in the form of a three-

dimensional data array: the first dimension (rows) contain each sequence, the second

dimension (columns) represents the consecutive samples, and the third dimension

contains the multi-dimensional feature vector. For example, an input array of

ten sequences of 400 samples and six-dimensional features has the dimensions

10× 400× 6, and the data point at index [4, 3, 2] is the second feature of the third

sample of the fourth recording. Cpm operations on the input data include standard

matrix operations such as transposition, multiplication, and inversion.

Pitch chroma features are a natural preliminary choice for aligning musical audio

with the Cpm since they have been found to yield good alignment of musical audio

by other algorithms, both in general and on the Chopin dataset used in this thesis

(Kirchhoff and Lerch 2011). As introduced in Section 2.2.2, a pitch chroma vector

has twelve values, the strengths of each pitch class (A, A]/B[, B, . . . , G]/A[) in

the audio frame. The input array of musical recordings to the Cpm is therefore a

three-dimensional data array where the first dimensional represents each recording,

the second represents the consecutive feature frames, and the third contains the

twelve-dimensional feature vector. The size of the Cpm input array for an alignment

of musical recordings using pitch chroma features is therefore [the number of

recordings]× [the number of frames in each recording]× 12.

3.2.1 Musical implementation

In this thesis, alignment with the Cpmwas performed with an open-source, Matlab-

based implementation of the Cpm developed by the algorithm’s author (Listgarten

2007).1 The Cpm paramater choices are listed in Table 3.1.

1The toolbox can be found at www.cs.toronto.edu/~jenn/CPM/. A patch created to update the
toolbox to Matlab’s more recent 64-bit API can be found at www.music.mcgill.ca/~hannah/CPM.
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Pitch chroma features were extracted with the Chroma Toolbox for Matlab

(Müller and Ewert 2011). As part of the feature extraction process, the audio was

first converted to mono, normalized to have a maximum amplitude of one, and

downsampled from 44.1 kHz to 22.05 kHz. A window size of 2408 samples with

a 50% overlap was used, to give a feature resolution of 46 ms. Recordings were zero-

padded so that each contained 600 feature frames, a duration of 27.6 seconds.2

An example of the output generated by a Cpm alignment, both the training and

the alignment extraction, is presented in Figure 3.1. Note that the output alignment

mapping is in latent time, which contains just over twice as many samples as the

original input files.

Table 3.1 Implementation variables

Variable Value

Maximum number of Em iterations 10

Em log-likelihood difference threshold 1.000e-04

Length of each time series (number of samples) 600

Number of bins (time-series dimensionality) 12

Number of Hmm time statesi 1260

Number of Hmm scale states 7

Total number Hmm statesii 8820

Use scaling spline False

Learn Hmm emission variance True

Learn latent trace True

Learn scale transitions probabilities False

Learn time transitions probabilities False

Learn scaling parameter(s) True

λ (smoothing penalty) False

ν (inter-class penalty) False

Number of classes 1

iAuto-generated from length of time series.
iiNumber of Hmm time states ∗ number of Hmm scale states.

2Due to normalization, all twelve bins in each “silent” zero-padded frame summed to one rather
than zero, so the matrix was actually “1/12th-padded” rather than zero-padded.
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Fig. 3.1 Alignment output from multiple alignment by the Cpm using
the Cpm Toolbox for Matlab: eight original input recordings with their
original timelines (top), the learned latent trace (middle), and the original
recordings re-mapped to the timeline of the latent trace (bottom). The
aligned recordings are the first 18 seconds of Ballade from the Chopin
dataset. Each figure plots the amplitude of the signal’s energy, in decibels
(dB). In the top figure, each sample along the x−axis has a 46 ms duration.
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4—Evaluation methodology

T he methodology for evaluating alignment algorithms is non-trivial, as the

choices of evaluation metric, dataset, and features often affect algorithm

performance. In this thesis, pairwise and multiple alignment of musical recordings

by the Cpm is compared to pairwise and iterative pairwise alignment by Dtw,

by means of a straightforward, quantitative assessment that measures the distance

between the algorithmically calculated alignments and the ground-truth alignment.

After presenting approaches to alignment evaluation (Section 4.1) and dataset

considerations (Section 4.2), the chapter describes the experimental design of the

thesis—including the evaluation metrics, alignment mapping manipulations, and

software implementations utilized (Section 4.3).

4.1 Approaches to evaluation of musical alignment

Evaluations of audio-to-audio alignment algorithms are often tailored to real-world

use cases, in that they evaluate the results of a particular task that involves an align-

ment algorithm. Different approaches are taken in the evaluation of similarity-based

alignment tasks as compared to synchronization-based tasks. The main difference

between these tasks, as was discussed in Chapter 2, is that similarity-based tasks use

alignment to improve an overall similarity measure between two recordings, often

for purposes of retrieval, while synchronization-based tasks make use of the warping

paths created by the algorithms, often for purposes of score following or comparison

of musical events across different recordings. Correspondingly, similarity-based

evaluations focus on an entire retrieval system, while synchronization-based tasks

focus on the accuracy of the generated warping path.

Evaluations of similarity-based tasks generally focus on the overall success of

the content-based music retrieval system making use of an alignment algorithm.

This success is measured objectively, in terms of successful retrieval rates by the
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whole system: rates of correctly identifying a query, incorrectly identifying a query,

neglecting to identify a query, and correctly rejecting a query that does not have

a match in the system’s database. The Mirex cover song identification and query-

by-humming competitions take this approach (Downie and Bay 2008).1,2 In the

cover song identification task, for example, system performance is measured by the

number of correct audio matches in the top ten items that the system retrieves as

most similar to the query.

In contrast, evaluations of synchronization-based tasks focus on how well the

generated alignment path follows the known ground-truth (“true”) alignment path,

and both subjective and objective evaluations of synchronization-based tasks have

been implemented. Turetsky and Ellis (2003) took a subjective approach by means

of a listening-based evaluation: after automatically aligning synthesized symbolic

(Midi) scores to audio recordings via Dtw, the original Midi tracks were re-

synthesized to have the same timeline as the recording to which they had been

aligned. Researchers then listened to the original recording and the re-synthesized

Midi recording simultaneously and rated the alignment on a subjective five-point

“quality of alignment” scale. Dixon and Widmer (2005) took an objective evalu-

ation approach: alignment was automatically performed on recordings for which

a ground-truth alignment path had previously been determined. The overall

accuracy of each alignment was then calculated by measuring the distance (in a

two-dimensional similarity matrix) from points on the ground-truth alignment to

points on the automatically generated alignments. This approach, also reproduced

by Kirchhoff and Lerch (2011), forms the basis of the evaluation performed in this

thesis.

4.2 Dataset selection

Datasets for the objective evaluation of audio-to-audio alignment must contain at

least two recordings of the same underlying music as well as ground-truth alignment

annotations among those recordings. The number of publicly accessible datasets

that fulfill both criteria is small. Few datasets with event annotations contain two

or more recordings of the same underlying piece, and vice versa: of the datasets

that contain multiple versions of a piece, many are designed for similarity-based

1www.music-ir.org/mirex/wiki/2010:Audio_Cover_Song_Identification
2www.music-ir.org/mirex/wiki/Query_by_Singing/Humming

www.music-ir.org/mirex/wiki/2010:Audio_Cover_Song_Identification
www.music-ir.org/mirex/wiki/Query_by_Singing/Humming


4.2 Dataset selection 41

alignment tasks like version identification and/or cover song identification and so do

not contain alignment annotations (e.g., Downie and Bay 2008). Some evaluations

have overcome the dearth of ground-truth alignment data through creation of

ground-truth data from artificially warped duplications of a single original recording

(e.g., the first evaluation in Kirchhoff and Lerch 2011) by mapping the events in

the original timeline to the known post-warping times of those same events in

the generated recordings. Other evaluations have used automated beat-tracking

systems to annotate evaluation sets, by mapping successive beats in one recording

to successive beats in another recording of the same piece (e.g., Dixon and Widmer

2005). This latter approach relies on successful automated beat segmentation of the

recordings to be aligned.

4.2.1 The Chopin dataset

The dataset used in this evaluation, the Chopin dataset (Goebl 2001), is one of

the few datasets that contains both multiple recordings of the same piece and an

annotated ground-truth alignment mapping. Originally created for a study on

melodic emphasis in piano performance, the Chopin dataset has since been used

for other audio-to-audio alignment evaluations (Dixon and Widmer 2005; Kirchhoff
and Lerch 2011). It contains both audio files and event onset annotations for excerpts

from two compositions by Frédéric Chopin (the first 45 measures of Ballade in F

major, op. 38, and the first 21 measures of Etude in E major, opus 10 No. 3)

performed by 22 different skilled pianists on a Bösendorfer computer-monitored

grand piano. The musical scores of these two excerpts are included in Appendix A

and the audio is available online.3

In the Chopin dataset, onset annotations for each note were automatically gen-

erated by the computer-monitored piano during each recording session. The onset

time of each note event in a recording is paired manually with its corresponding note

in the original symbolic score. The resultant mapping of events in all recordings to

events in the symbolic score provides the overall ground-truth alignment between

any two or more recordings (of that same excerpt) in the dataset.

For this evaluation, a reduced subset of the Chopin dataset was used, consisting

of the first 40 score events (approximately nine measures) of all 22 recordings of

the Ballade. These ranged in duration from 20 to 26 seconds, with an average

duration of 22.5 seconds. This dataset reduction was implemented to reduce the

3www.iwk.mdw.ac.at/goebl/mp3.html

www.iwk.mdw.ac.at/goebl/mp3.html
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overall experimental runtime; precedent for evaluating audio-to-audio alignment

with short excerpts (in some cases, as short as two seconds) was set by Basaran et al.

(2011), Müller et al. (2010), and Bohak and Marolt (2012), among others. One of

the preliminary experiments in Chapter 5 compares Dtw alignment of this reduced

dataset to Dtw alignment of the original full dataset.

4.3 Experimental setup

Two sets of experiments are conducted, to test performance of the Cpm on each

pairwise and multiple alignment. Dtw is used as a benchmark audio-to-audio

alignment algorithm against which to compare alignment by the Cpm, since Dtw

is frequently used in audio-to-audio alignment applications (Chapter 2) and Dtw

alignment has been objectively evaluated on the Chopin dataset (Dixon and Widmer

2005; Kirchhoff and Lerch 2011).

The first experiment compares pairwise alignment by the Cpm to pairwise

alignment by Dtw and the second experiment compares multiple alignment with the

Cpm to iterative pairwise alignment by Dtw. For the pairwise alignment evaluation,

all 231 unique pairings of the 22 performances were aligned. For the multiple

alignment evaluation, groups of size three, four, eight, twelve, and sixteen recordings

were randomly selected from all possible combinations of the 22 recordings. 231

unique groups of size three and four were aligned; 160 unique groups of size eight,

twelve, and sixteen were aligned.

4.3.1 Evaluation metrics

Alignment in this thesis is evaluated with an objective, synchronization-based

deviation metric proposed by Dixon and Widmer (2005). This deviation is a

measure of distance between an alignment path and the ground-truth alignment

path. The deviation measures of an alignment are the collection of distances between

each known point along the ground-truth path to their nearest neighbor on the

algorithmically generated alignment path.4 Using this metric, algorithm success

(or lack thereof) is determined by comparing the sets of deviations for different

alignments, on the basis of statistics like mean, median, and maximum deviation.

To the best of our knowledge, this metric has not previously been applied to

multiple audio-to-audio alignment; in this thesis, the only modification to extend

4Dixon and Widmer (2005) calls this distance metric “error” instead of “deviation.”
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it from pairwise to multiple alignment was in the choice of distance algorithm.

For pairwise alignment, Dixon and Widmer (2005) and Kirchhoff and Lerch (2011)

calculate deviation with the Manhattan distance measure. For calculating the

distance between multi-dimensional points, however, Euclidean distance is more

often used than Manhattan distance. In order to apply the same deviation calculation

both to pairwise and to multi-dimensional alignment evaluation, Euclidean distance

was used for both. (One of the preliminary experiments in Chapter 5 compares

pairwise Dtw alignment for each Manhattan and Euclidean distance measures; every

other alignment evaluation in the thesis uses Euclidean distance.)

Whether calculated for two- or for multi-dimensional alignment paths, the resul-

tant deviation values are single-dimensional scalars. To compare alignment success

across alignment groups of different sizes in this thesis, an additional deviation-

per-recording metric is calculated by dividing each deviation by the number of

recordings in the group alignment.

4.3.2 Implementation details

Feature extraction

Each audio file in the Chopin dataset was recorded in stereo at 44.1 kHz. As in other

audio-to-audio alignment evaluations (Kirchhoff and Lerch 2011), before feature

extraction the audio is first converted to mono, normalized to a maximum amplitude

of one, and downsampled from 44.1kHz to 22.05kHz. Pitch chroma features are then

extracted with the Chroma Toolbox for Matlab (Müller and Ewert 2011), using a

window size of 2408 samples with a 50% overlap, resulting in twelve-dimensional

feature vectors with a time resolution of 46 ms. Finally, the features are normalized

with respect to the Euclidean norm.

Ground-truth alignment mapping

The ground-truth annotations of the Chopin dataset are in the form of text files, one

file per recording. Each file contains a list of the symbolic notes in the score paired

with the timestamp of its onset in the corresponding audio recording.5 The anno-

tations contain minimal information about performance errors. If a note has been

skipped by the performer, its time annotation is listed as “no_played_note;” any

5The timestamps are provided in units of Midi ticks, along with the tick-to-second conversion
rate.
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other performance errors (e.g., accidental additions) are ignored in the annotation

file. (The reduced dataset used in this thesis contained no skipped notes.)

As the symbolic score is identical across all 22 recordings of each excerpt, ground-

truth alignment paths are calculated by matching the onsets of each note in one

annotation file to the corresponding onsets of that same note in the other annotation

files. As in Dixon and Widmer (2005), simultaneous notes in the score are grouped

together into a single score event to prevent measurement inconsistencies due to

the lack of fixed order of chord notes not played at precisely the same time. The

timestamp for each score event is the average of the timestamps of its constituent

notes. Ornamental notes such as grace notes are not, however, grouped into score

events, despite having the same score onset times as the non-ornamental notes they

precede, since they have a fixed performance order.6

Iterative pairwise alignment with Dtw

In general, the evaluation was scripted in a combination of R and Matlab (R Core

Team 2012; Matlab and Matlab Signal Processing Toolbox 2011). Implementation

of the Cpm, in Matlab, was discussed in Chapter 4; Dtw is implemented as follows.

Pairwise Dtw was performed with the dtw package for R (Giorgino 2009);7

entries in the distance matrix were calculated as the Euclidean distance between the

feature vectors. A standard global path constraint was used, which force-aligned the

start and end of each recording to one another. To calculate the warping path, a

standard single-step cost path (in horizontal, vertical, and diagonal directions) was

implemented. Audio-to-audio alignment has been performed both with and without

a penalty applied to diagonal steps along the cost path, a penalty that serves to

remove the diagonal bias of the basic single-step cost path (Dixon and Widmer 2005;

Kirchhoff and Lerch 2011). In this thesis, both cost path variants were implemented

and compared in a preliminary experiment in Chapter 5.

Iterative alignment using the Dtw-aligned pairs was scripted in Matlab. To

perform iterative pairwise alignment, one of the recordings from the group was

chosen as the reference. Each remaining (secondary) recording was then mapped

successively to that reference using the pairwise Dtw alignment mapping between

the two. When multiple frames in a secondary recording map to a single frame in the

reference recording, extra frames were inserted into the reference until there existed

6No mention of ornamental notes is made in Dixon and Widmer (2005) or Kirchhoff and Lerch
(2011), so treatment of grace notes in those works is ambiguous.

7dtw.r-forge.r-project.org/

dtw.r-forge.r-project.org/
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one reference frame per corresponding secondary recording. The inserted frames

were copies of the preceding frame, for all secondary recordings already mapped to

the reference. (Single frames in the secondary recording that map to multiple frames

in the reference recording required no reference timeline insertion or alteration; they

were simply repeated as indicated by their pairwise alignment mapping.)

The choice of reference recording in iterative pairwise alignment with Dtw was

found to be non-trivial. As shown in Figure 4.1 and quantified in the next chapter,

the alignment success of any given group of recordings varies greatly depending

on the choice of reference recording. To more fully explore this variation in the

thesis evaluation, each group alignment was repeated as many times as recordings

in the group, with each recording used once as the reference recording (e.g., for

a group alignment of four recordings, four different global alignment paths were

calculated). This means that for each alignment group two sets of deviation measures

were reported: one set containing all possible alignments of the group, combined

(i.e., all deviations reported for each group alignment, as generated using each of the

different possible reference recordings), and one set consisting of just the deviations

from the best alignment of the group. In this latter case, the best alignment is

considered to be the alignment that generates the lowest total deviation, where total

deviation is calculated by summing all pointwise deviations from one individual

alignment.

From latent time to a more meaningful timeline

To compare Cpm to Dtw using the metrics introduced above, the alignments must

exist in the same alignment space. The warping path generated by Dtw (for both

pairwise and iterative pairwise alignment) exists in an alignment space defined by

the timelines of the original recordings (one per axis). By definition of the warping

path constraints used, it has a consistent sample rate and therefore path resolution

of no more or less than one frame per sample.

The warping path generated by the Cpm is output in the latent time space,

however, and when used to map back to the same alignment space utilized in Dtw

has a non-consistent sampling rate and resolution, due to a lack of meaningful or

consistent sampling rate in the calculated latent trace. To transform this mapping

to the multi-dimensional alignment space of Dtw, rather than one indexed by the

inconsistently sampled latent trace, the trace is used as a dictionary to map back into

the alignment space defined by the original timelines. To ensure the same warping-
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Fig. 4.1 The alignment paths through three different performances of
Chopin’s Ballade, as used in the evaluation. Each alignment path is
calculated through the same three recordings, each using a different
recording as the reference.

path resolution as that generated by Dtw, the Cpm’s warping path is interpolated to

fill in any gaps in the path larger than those of the Dtw.

Results from the evaluation described in this chapter are presented in the next

chapter.
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5—Results and discussion

I n this chapter, experimental results are presented and discussed, after a brief

review of statistical tests in Section 5.1. In Section 5.2, preliminary evaluations

compare the implementation of Dtw for this thesis to previous results from the

literature, and the choice of reduced dataset is investigated; in Section 5.3, pairwise

alignment with the Cpm is compared to pairwise alignment with Dtw; and in

Section 5.4, simultaneous multiple alignment with the Cpm is compared to iterative

pairwise alignment with Dtw, on variously sized groups of recordings.

5.1 Review of statistical tests

This section briefly reviews the statistical tests used in this thesis. Section 5.1.1

introduces the tests used to investigate data distributions (e.g., the distribution of

alignment deviations by a particular algorithm), which determine whether para-

metric or nonparametric analysis methods are required when comparing data from

different experimental groups. Section 5.1.2 introduces the tests used to compare

two or more experimental groups (e.g., alignment under different experimental

conditions, such as different algorithms), which determine whether or not the data

were drawn from the same population (i.e., whether the different algorithms yield

different results). All tests performed in this thesis use a confidence interval of 95%

(for significance level α = 0.05). Note that the sample size, n, of an experimental

group is the total number of deviations calculated for all alignments performed in

the experiment. For example, data from six alignments of recordings containing

eight score events have sample size n = 6× 8 = 48.

5.1.1 Investigating normality and variance

The classes of test used to compare experimental groups (parametric versus non-

parametric) are based on assumptions about the distribution of data in those groups.
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To determine which type of comparison tests to use, the data from each experiment

are tested for distribution normality and homogeneity of variance. If each group

has a normal distribution and there is homogeneity of variance across the groups,

parametric tests are used. Otherwise, nonparametric tests must be used.

To determine if data are normally distributed, three tests are used to accept or

reject the null hypothesis of the data belonging to a normally distributed popu-

lation: the Kolmogorov-Smirnov (K-S) test, which compares the data to a normal

distribution density;1 the Lilliefors test (Lilliefors 1967), which is based on the KS

test, but with a stochastically smaller probability distribution (i.e., greater sensitivity

than the KS test);2 and the Jarque-Bera (J-B) test (Jarque and Bera 1987), which

tests the skewness (lack of symmetry) and kurtosis (flatness of the peak) of the

data distribution as compared to those of a normal distribution.3 To report the

tests for normality, each test’s statistic (D) is reported, along with the sample size

(n) and significance (p), e.g., DKS(9240) = 0.5, p = 0.001; DL = 0.34, p = 0.001;

DJB = 9.3 ∗ 105, p = 0.001 for a test of normality on a population of 9240 samples.

Variance is a measure of the spread of values in a dataset, calculated as the data’s

standard deviation squared. Homogeneity of variance is when experimental groups

have a similar variance. Two tests are commonly used to determine if experimental

groups have homogeneity of variance: Levene’s test and the variance ratio. For data

with large sample sizes the variance ratio is a more reliable measure (Field 2005, 98);

this is because small differences in variance, such as the presence of extreme outliers,

can unduly influence the significance of Levene’s test when sample sizes are large.

Since all tests in this thesis have large sample sizes (n ≥ 231), the variance ratio is

used to test for homogeneity of variance. To calculate the variance ratio, variance

is first calculated for each group individually; the variance ratio is then the largest

divided by the smallest variance of all groups. Homogeneity of variance is assumed

when the variance ratio is less than two.

Folded distributions

As will be seen in the results, nonparametric tests were required in all experiments

due to non-normality of the data. This non-normality was an anticipated conse-

quence of the deviation metric. Deviation is the distance between a ground-truth

point and an algorithmically generated warping path, and contains no information

1
Matlab function kstest (Statistics Toolbox).

2
Matlab function lillietest (Statistics Toolbox).

3
Matlab function jbtest (Statistics Toolbox).
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about whether the point is above or below the line. The distribution of deviation

data therefore has a lower bound at zero:

Measurements are frequently recorded without their algebraic sign.

As a consequence, the underlying distribution of measurements is re-

placed by a distribution of absolute measurements. . . . The effect of

dropping the sign is to add the otherwise negative values to the positive

values. Geometrically this amounts to folding the negative side of the

distribution onto the positive side. (Leone et al. 1961)

Non-normal distributions, requiring nonparametric comparison tests, are therefore

expected for all experiments.

5.1.2 Comparing data groups

Depending on the number of experimental groups in each experiment, as well

as the relative sample size of each group, we perform one of two nonparametric

comparisons: the Wilcoxon signed-rank test or Kruskal-Wallis one-way analysis

of variance by ranks. For two experimental groups with repeated measurements,

comparison is performed with the Wilcoxon signed-rank test (Wilcoxon 1945),4.

Repeated measurements are measurements performed on the same “subject;” in this

thesis, a subject is an individual score event (e.g., the third note in the score). By

definition, therefore, this test is only ever performed on two experimental groups

with the same sample size (e.g., results of two different alignment algorithms used

to align exactly the same score events). The Wilcoxon signed-rank test is reported as

the test statistic T , significance, and effect size r, e.g., T = 0, p = 0.01, r = −.57. When

significant, it indicates that the two groups have different medians.

To compare more than two experimental groups, or two groups with different

sample sizes, we use the Kruskal-Wallis one-way analysis of variance by ranks

method (Kruskal and Wallis 1952), a nonparametric version of the (parametric) one-

way analysis of variance (Anova) test.5 The Kruskal-Wallis test is reported as the test

statistic H , along with its degrees of freedom (the number of groups minus one) and

significance, e.g., H(2) = 8.88, p = .07 for a test with two degrees of freedom. When

significant, it indicates that at least one of the groups has a different distribution

from the rest.

4
Matlab function signrank (Statistics Toolbox).

5
Matlab function kruskalwallis (Statistics Toolbox).
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The mean, maximum, and median for each experimental group will be reported

in the tables of results. For both the Wilcoxon and Krsuskal-Wallis tests, significance

indicates only that the groups have different distributions from one another. Since

these tests rely on comparing the medians of experimental groups, and the groups

are non-normal, median is more meaningful of the three statistics reported. Mean

and maximum are reported here because they are used to compare alignments in

Dw05 and Kl11.

5.2 Preliminary Dtw investigation

The first set of evaluations investigates general choices regarding Dtw implemen-

tation and evaluation methodology: First, results from the Dtw implementation

used in this thesis are compared to results previously published in the literature

(Section 5.2.1). Second, two different choices of alignment path cost-path weighting

for Dtw are compared (Section 5.2.2). Next, the reduced Chopin dataset used in the

remainder of experiments is compared to the original Chopin dataset (Section 5.2.3).

Finally, two different distance measures for calculating alignment deviation, Eu-

clidean and Manhattan, are compared (Section 5.2.4).

5.2.1 Comparison with the literature

This first evaluation compares the implementation of Dtw in this thesis to similar

implementations of Dtw in the literature, to ensure comparable alignment outcomes

despite slight differences in feature selection and feature frame size. Table 5.1

displays the results of Dtw, as implemented with each of the two Dtw cost-path

weightings (one with a diagonal bias [♦] and one without [♣], as discussed in

Section 4.3.2) on each the original Chopin dataset and the reduced Chopin dataset.

The results of the two previous Dtw alignment evaluations performed using the

Chopin dataset, Dixon and Widmer (2005) (Dw05) and Kirchhoff and Lerch (2011)

(Kl11), are also included in this table.6

As in Kl11 and Dw05, a Manhattan distance measure is used to calculate

alignment deviation for all evaluations. Because Kl11 and Dw05 each implemented

6
Kl11 provided separate results for the Etude and the Ballade; in the table they have been

combined into a single deviation measure to enable comparison of results across the different studies.
The Ballade contains nearly half as many score events as the Etude, so the individual excerpt means
were weighted when combined: meanFull = .33*meanBallade + .67*meanEtude.
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different cost-path weightings (diagonally biased and diagonally unbiased, respec-

tively) both were re-implemented for this thesis. It should be noted that while the

window size (1024 samples) is the same for each of the six treatments, the features

extracted in this thesis were calculated from downsampled audio, such that each

feature frame spans twice the duration of the features in Kl11 and Dw05: 46 ms

as compared to 23 ms. Additionally, the features themselves are not identical.

Dw05 used pitch onsets and Kl11 combined chroma features and onset features,

while this thesis makes use of a basic chroma feature.

Table 5.1 Deviation of Dtw alignment as compared to the literature

Literature[frame = 23 ms] Thesis[frame = 46 ms]

Dataset: Full♣dw05 Full♦kl11 Full♣ Full♦ Reduced♣ Reduced♦

Mean [frames] 1 1.1 1.32 ± 0.04 1.10 ± 0.02 1.15 ± 0.07 0.79 ± 0.02

Mean [ms] 23 26.0 61.1 ± 1.8 51.0 ± 1.1 53.4 ± 3.3 36.8 ± 1.1

Median [frames] 1 1 1 1 0 1

Median [ms] 23 23 46 46 0 46

Max [frames] Na 152 44 44 29 25

Max [s] Na 3.66 2.04 2.04 1.35 1.16

DW05 is Dixon and Widmer (2005) and KL11 is Kirchhoff and Lerch (2011); neither reported
uncertainty. Uncertainty for the thesis deviation is the standard deviation of the mean. ♦ indicates
a cost-path weighting favoring diagonally biased Dtw; ♣ indicates an unbiased weighting. Manhattan
distance was used to calculate deviation for all treatments.

Discussion

As seen in the table, the Dtw mean and median alignment deviations calculated

here are comparable to those published in the literature for units of frames. (Given

the differences in audio sampling rate, the deviations span half as much time in the

literature as they do in this thesis.)

The biggest differences across alignments can be seen in the measure of maximum

deviation: the results published in the literature are considerably larger than found

here (152 versus 44 frames, and 3.7 versus 2.0 seconds). While this discrepancy

could be due to the different features used in the alignment, it is likely due to choice

of score event: as discussed in the previous chapter, simultaneous notes are treated

as a single score event, even if the onset of each note in the score event is played
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independently from one another. In the MIDI score for the Chopin dataset, grace

notes have the same official onset time as the note they precede. In this evaluation,

grace notes were treated as independent score events, as their timing is known to

precede that of their following notes. Depending on how Dw05 and Kl11 calculated

their score events, however, the grace notes might have been included as part of the

following score event, introducing systematic error into the calculation of alignment

deviation (but not actually affecting the alignment itself—just the evaluation of the

alignment).

5.2.2 Choice of DTW cost-path weighting

Dw05 and Kl11 used different Dtw cost-path weightings: Dw05 used an unbiased

weighting, while Kl11 used a diagonally biased weighting, which preferences

diagonal steps in the warping path. To investigate the effect of cost-path weighting

on Dtw alignment of this dataset, both weightings were implemented in Dtw, on

both the original and the reduced datasets.

Results

All four test conditions (full dataset with diagonal weighting, full dataset with

no weighting, reduced dataset with diagonal weighting, and reduced dataset with

no weighting) yielded non-normal distribution of deviations (p < 0.05), as seen

in Figure 5.1. In addition, the reduced dataset violates homogeneity of variance

(variance ratio = 3.13); the full dataset has homogeneity of variance (variance ratio =

1.64). Since normality and homogeneity of variance are violated, and more than two

experimental groups of varying sample sizes were compared, the Wilcoxon signed-

rank test was used.

A significant difference due to slope weighting was found for both the full dataset

(T = 6.6∗107, p < 0.01, r = −0.011) and the reduced dataset (T = 1.6∗106, p < 0.01, r =

−0.043). For the full dataset, the diagonally biased weighting had a greater mean

and equal median (mean = 1.32± 3 frames, median = 1 frame) compared to the non-

diagonally biased weighting (mean = 1.10 ± 2.3 frames, median = 1 frame). For the

reduced dataset, the diagonally biased weighting yielded a greater mean but lesser

median (mean = 1.15±2.6 frames, median = 0 frames) than the non-diagonally biased

weighting (mean = 0.79±1.5 frames, median = 1 frame). (Both mean and median are

reported because mean was used to compare results in the literature, while median

is a more reliable statistic for comparing these non-normally distributed data.)
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Discussion

The median alignment deviations for diagonally biased weighting are comparable to

those with a non-diagonally biased weighting, Because the diagonally biased slope

weighting slightly outperforms the unbiased weighting in the reduced dataset (it has

a slightly lower median), we chose to use it as the slope weighting for all subsequent

Dtw alignments.

This result also highlights the importance of parameter choice when implement-

ing an algorithm such as Dtw: it is possible that the out-performance of Dw05 by

Kl11 was due to the difference in slope weighting implemented by each, rather than

to the careful feature selection credited with the improved alignment. Their results

are especially ambiguous since mean and maximum values were used to compare

the studies. As can be seen here, using mean rather than median to compare the

weightings flips the outcome, indicating that a non-diagonally biased weighting

yields better alignment performance.

5.2.3 Reduced versus original dataset

To investigate the effect of the reduced dataset, Dtw alignment of the reduced

dataset was compared to Dtw of the original dataset, for both biased and the

unbiased Dtw slope weightings.

Results

Due to the non-normality of the samples in all four test conditions (determined in

the previous section), the violation of homogeneity of variance in the alignments

with unbiased slope weighting (variance ratio = 2.52),7 and the comparison of more

than two experimental groups, the Kruskal-Wallis one-way analysis of variance by

ranks test was used.

Both the biased and unbiased slope weightings showed a significantly larger

mean deviation for the full compared to the reduced dataset (H(1) = 68,p < 0.01and

H(1) = 2 ∗ 102,p < 0.01, respectively). For the diagonally biased cost path, the full

dataset has a larger mean deviation (mean = 1.32 ± 3 frames, median = 1 frame)

than the reduced dataset (mean = 1.15 ± 2.6 frames, median = 0 frames). For

the unbiased cost path, the full dataset has a larger mean deviation (mean =

7The alignments with biased slope weighting maintained homogeneity of variance (variance ratio
= 1.32).
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Fig. 5.1 Histogram of alignment deviations for pairwise alignment by
Dtw on the original and reduced datasets, with both diagonally biased
and diagonally unbiased cost-path weightings.
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1.10 ± 2.3 frames, median = 1 frame) than the reduced dataset (mean = 0.79 ±
1.5 frames, median = 1 frame).

Discussion

The difference in alignment performance (median) between the full and reduced

datasets are less than or equal to one frame. As the resolution of the alignment

algorithms is on the order of a single frame, by definition of Dtw, the difference

in performance between the full and reduced dataset falls below the resolution

threshold and can be discounted. For the remainder of evaluations in this thesis, the

reduced dataset is used instead of the full dataset and the results can be compared

to those of other studies that perform alignment of the full Chopin Ballade excerpt.

5.2.4 Deviation distance measure

Finally, the choice of distance measure for calculation of the deviation metric,

Euclidean versus Manhattan, is investigated.

Results

The results of alignment performed by each of the distance measures are non-

normally distributed, as seen in Figure 5.2. Thus, despite homogeneity of variance

(variance ratio = 1.44) a nonparametric comparison test was required. Since the

two sets of results are repeated measures, the Wilcoxon signed-rank test was used.

A significant difference (T = 0, p < 0.01, r = −0.189) was found between the

Manhattan (mean = 0.79 ± 1.5 frames, median = 1 frame) and Euclidean (mean =

0.71± 1.2 frames, median = 1 frame) distance measures.

Discussion

Despite the Manhattan and Euclidean distance measures yielding significantly dif-

ferent deviation distributions, they have the same median. This renders the choice

of distance measure in the deviation calculation metric trivial, as long as the same

measure is used for all alignments being compared.

Manhattan distance was used for the preceding alignments in this section as

it was used in the literature on pairwise alignment. In the remainder of this

thesis, however, Euclidean distance will be used, as Euclidean distance is a common

distance measure in multi-dimensional space, which makes it a more natural choice
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Fig. 5.2 Histogram of alignment deviations for pairwise alignment by
Dtw, as evaluated with Manhattan and Euclidean distances.

for the multi-dimensional evaluation metric. To maintain consistency throughout

the evaluation, it is similarly used for the pairwise evaluation metric.

5.3 Pairwise alignment

This evaluation compares pairwise alignment by the Cpm to pairwise alignment by

Dtw. It should be noted that for this and all following experiments the reduced

dataset was used, along with the Euclidean distance metric for deviation calculation

and the diagonally biased Dtw cost-path weighting.
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5.3.1 Results

The results of pairwise alignment by each Dtw and the Cpm are shown in Table 5.2,

Figure 5.3, and Figure 5.4. While the figures present the data more comprehensively,

the table mirrors the format of the results presented in Dw05 and Kl11. In the top

portion of the table, cumulative deviation is displayed (cumulative deviation is the

frequency distribution of deviations, presented as a percentage of deviations shorter

than or equal to the time listed in the leftmost columns). In the bottom portion of

the table, the mean, median, and maximum deviation of each set of alignments is

listed, both in frames and milliseconds.

Due to the non-normality of the samples in these two test conditions (calcu-

lated and displayed in Figure 5.4) and their repeated measures, the nonparametric

Wilcoxon signed-rank test was used to compare them. A significant difference was

found between Dtw and Cpm for pairwise alignment (T = 1.5 ∗ 107, p < 0.01, r =

−0.183).

Table 5.2 Pairwise alignment: Dtw vs. Cpm

Deviation ≤ Cumulative deviation (%)

Frames Seconds Dtw Cpm

0 0 49.7 1.3

1 0.046 89.4 68

2 0.093 95.4 78.1

3 0.139 96.8 79.1

5 0.232 97.9 80.7

10 0.464 99.7 84.2

25 1.161 100 90.7

50 2.322 100 99

Mean [frames] 0.79±0.02 5.48±1.42

Mean [ms] 36.79±1.06 254.51±66.12

Median [frames] 1.0 0.5

Median [ms] 46.0 23.0

Max [frames] 25 89.15

Max [s] 1.16 4.14
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Fig. 5.3 A comparison of pairwise alignment by Dtw and Cpm. Each
box spans the interquartile range (the 25th to 75th percentile) of the de-
viation distribution. The whiskers form the boundaries between extreme
deviation values and outliers. The dark horizontal line marks the median,
the circle marks the mean. Due to the logarithmic scaling of the y−axis,
deviation values of zero are not able to be displayed for the lower whiskers
and the lower bound of the Dtw box.
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Fig. 5.4 Histogram of alignment deviations for pairwise alignment by
Dtw and Cpm. The x−axes do not span the whole range of deviations, but
the full range (including outliers) can be seen in Figure 5.3.
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5.3.2 Discussion

It is clear from Figures 5.3 and 5.4 that the Cpm is as successful as Dtw for pairwise

audio-to-audio alignment of music, at least for these particular recordings and audio

features. The deviations for each algorithm have the same order of magnitude, with

the upper bound on their interquartile ranges (two frames). Additionally, the Cpm

has a lower median deviation.

The especially large deviations can most likely be attributed to poor alignment

of entire pairs of recordings. For the evaluation methodology used in this thesis,

each alignment contributes a set of deviation values to the overall deviation data. By

definition of the algorithmic constrains of global alignment, the first and last score

events must have a low deviation from ground truth because boundary restrictions

force the beginning and ending of each recording to map to the beginnings and end-

ings of the other recordings.8 Additionally, because global alignment is monotonic

(the order of events is preserved such that an alignment always progresses forward in

time through all recordings), the deviation of a score event is related to the deviation

of preceding and following score events.

As it is impossible for an alignment to suddenly stray and then snap back (or

vice versa) without violating the monotonicity imposed by both Dtw and Cpm, large

score event deviations do not occur in isolation: large deviations in the midst of

smaller ones (or vice versa) are impossible unless the duration between score events

is large compared to the feature resolution (sample rate), such that the score events

do not adequately represent the alignment path.9 As the score events in this thesis

adequately represent the alignment path, the presence of larger Cpm deviations

suggests that alignment of several of the pairs of recordings strayed substantially

from the ground truth.

In general, these results underscore the importance of reporting alignment results

other than the mean and maximum deviation values. Since the data are non-

normally distributed the median is a more meaningful statistic than mean, and

is the value tested by the nonparametric Wilcoxon signed-rank test.10 In this

particular evaluation, since Dtw has a lower mean than Cpm and the maximum Cpm

deviation is nearly four times larger than that of Dtw, reporting only the mean and

8In the Chopin dataset the first score event is the first frame of each recording, so the first
deviation of each alignment by Dtw will always be zero.

9This underrepresentation of the path is similar to signal aliasing.
10Note that when the Wilcoxon test finds a significant difference between experimental groups, no

conclusion can be drawn other than that the groups have different distributions.
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maximum deviations would logically imply that Cpm performs pairwise alignment

considerably worse than Dtw. By looking at Figures 5.3 and 5.4, however, it is clear

that the deviations of each algorithm are on the same order of magnitude, and the

median Cpm deviation is actually lower than the median Dtw deviation. The reason

for this mean versus median switch is made clear by the box plot: there are a much

greater number of large Cpm deviations than for Dtw, and these large deviations

inflate the mean.

As a side note, the distribution of Cpm deviations smaller than one but larger

than zero is noteworthy, and likely due to creation of and alignment with the latent

trace. Unlike Dtw, in which the initial sample rate of the recordings are maintained

during alignment, the sample rate of the latent trace has no meaningful relation to

those of the input recordings. Because interpolation is involved when the recordings

are pairwise aligned back to the latent trace, deviations smaller than a single frame

are possible and likely. When the Cpm deviations are rounded to the nearest frame

when grouping them, their distribution closer to zero more clearly matches that of

Dtw. This is apparent in the histogram, where the bin size of one effects rounding

each deviation to the nearest frame.

5.4 Multiple alignment

This evaluation investigates the two multiple alignment approaches—-iterative

pairwise alignment (using Dtw) and simultaneous alignment (by the Cpm). As

mentioned in the previous chapter and illustrated in Figure 4.1, the choice of

reference recording affects the overall group alignment. As seen in that figure,

the resultant alignment path differs depending on which recording is used as the

reference. For this reason, two different Dtw alignment results are reported for

each group alignment: DtwAll and DtwBest. Each group of recordings was aligned

by iterative Dtw as many times as the number of recordings it contained, with

each recording used once as the reference recording, and deviation measurements

were calculated for each of these alignments. DtwAll consisted of all deviation

measurements for all reference recordings of the group (i.e., all possible choices),

while DtwBest contains only the deviation measurements from the single most

successful alignment of the group (i.e., alignment with the reference recording found

to perform best for that group).
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For example, alignment of recordings A, B, and C by iterative Dtw is performed

three times: once with A as the reference recording, once with B as the reference

recording, and once with C as the reference recording. If the smallest deviations

are found to occur when using B as the reference, DtwBest is DTWB, while DtwAll

contains all deviation measurements from DtwA, DtwB, and DtwC combined. This

means that while Cpm and DtwBest each have sample sizes n = [number of unique

alignment groups] × [number of score events in one alignment], DtwAll has sample

size n = [number of unique alignment groups] × [number of score events in one

alignment] × [number of recordings aligned in each group].

Multiple alignment was calculated for alignment of groups of three, four, eight,

twelve, and sixteen recordings. 231 unique groups of recordings were aligned for

groups of size three and four; 160 unique groups of recordings were aligned for

groups of size eight, twelve, and sixteen.

5.4.1 Results

Normality testing for each of these group sizes are shown in Figures 5.5 to 5.9,

respectively. As deviation distributions for each of these group sizes was non-

normal, all comparison testing was nonparametric. The Kruskal-Wallis one-way

analysis of variance by ranks method was used to test for significance between

DtwAll and DtwBest and between DtwAll and Cpm, since each pair of groups has

two different sample sizes. The Wilcoxon signed-rank test was used to test for

significance between DtwBest and Cpm, as they have the same sample size and

consist of repeated measurements. For all multiple alignments, the Cpm performed

significantly better (p<0.05) than both iterative Dtw alignment with each recording

used as a reference once (DtwAll) and iterative Dtw alignment using the best-

performing reference (DtwBest). Results from these comparisons are shown in

Table 5.3.

Additionally, the performance of each of the three treatments (DtwAll , DtwBest,

Cpm) for each of the different group sizes is plotted in Figure 5.10. Because it is

difficult to see the values of Cpm from this figure, these same Cpm alignments are

replotted in Figure 5.11, on a logarithmic scale. A significant difference was found

across all tested group sizes for each of these three treatments: for DtwAll , H(5) =

6.9 ∗ 104, p < 0.01; for DtwBest, H(5) = 2.4 ∗ 104, p < 0.01); and for Cpm, H(5) =

1.7 ∗ 104, p < 0.01.
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Table 5.3 Multiple alignment: Significance testing on different group
sizes

Size DtwAll vs. Dtwbest DtwAll vs. Cpm DtwBest vs. Cpm

Three H(1) = 1.2 ∗ 103, p < 0.01 H(1) = 1.5 ∗ 104, p < 0.01 T = 1.7 ∗ 106, p < 0.01, r = −0.56

Four H(1) = 1.3 ∗ 103, p < 0.01 H(1) = 1.8 ∗ 104, p < 0.01 T = 1.4 ∗ 106, p < 0.01, r = −0.57

Eight H(1) = 1.3 ∗ 103, p < 0.01 H(1) = 1.4 ∗ 104, p < 0.01 T = 3.9 ∗ 105, p < 0.01, r = −0.60

Twelve H(1) = 1.6 ∗ 103, p < 0.01 H(1) = 1.5 ∗ 104, p < 0.01 T = 2.7 ∗ 105, p < 0.01, r = −0.60

Sixteen H(1) = 2.0 ∗ 103, p < 0.01 H(1) = 1.6 ∗ 104, p < 0.01 T = 1.0 ∗ 105, p < 0.01, r = −0.61

Note: Significance testing between DtwAll and DtwBest and between DtwAll and Cpm was
performed with the Kruskal-Wallis one-way analysis of variance by ranks test; significance testing
between DtwBest and Cpm was performed with the Wilcoxon signed-rank test.

5.4.2 Discussion

The results very clearly demonstrate the success of Cpm for alignment of this

dataset—especially as compared to iterative pairwise alignment with Dtw. Even as

compared to the best-case Dtw scenario (DtwBest), the Cpm performed either better-

than or comparably to Dtw for every alignment group size, as judged by both mean

and consistency (size of interquartile range).

Additionally, the Cpmwas considerably more reliable than Dtw, regardless of the

number of recordings in a group. As seen in Figure 5.11, the size of Cpm deviations

increased only slightly as the number of recordings to align increased. In contrast,

the size of Dtw errors steadily increases with the increase in alignment group size.

That said, the contribution of each recording to the overall Dtw alignment decreases

as more recordings are used in an alignment, as can be seen in the bottom plot of

Figure 5.10.

As can be seen in all the histograms, the deviation distributions for the two

algorithms have distinctive shapes that are maintained regardless of the number of

recordings in an alignment group. All distributions have peaks near zero, while

Dtwdistributions (both DtwBest and DtwAll variants) have an additional bell-

shaped curve. The presence of a peak near zero for all evaluations is due both to

good alignments and, for Dtw, to the zero-valued deviation of the first score event

of all alignments.11 Further analysis is required to tease apart these two sources, but

is beyond the scope of this thesis.

11The first score event occurs in the first feature frame in the Chopin dataset; as global Dtwmaps
the first frames to one another, deviation of the first score event is always zero.
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The additional curve in the deviation distributions can likely be attributed to

poor alignment of individual groups of recordings. As introduced in the previous

section in the context of large deviation values, extreme deviations do not exist in

isolation; the presence of the second peak suggests a sizable number of recordings

with less than ideal alignment. This intuition is supported by the fact that the shape

of the DtwAll deviation distribution mirrors that of DtwBest. For all group sizes, the

lower (left-hand) slope of DtwAll matches DtwBest but then extends notably higher,

as it contains a greater proportion of poorer alignments (alignments with greater

deviations).
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Fig. 5.5 Histogram of alignment deviations for alignments of three
recordings.
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Fig. 5.6 Histogram of alignment deviations for alignments of four
recordings.
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Fig. 5.7 Histogram of alignment deviations for alignments of eight
recordings.
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Fig. 5.8 Histogram of alignment deviations for alignments of twelve
recordings.
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Fig. 5.9 Histogram of alignment deviations for alignments of sixteen
recordings.
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Fig. 5.10 A comparison of multiple alignment by iterative pairwise
alignment with Dtw and simultaneous alignment with the Cpm, for
alignment groups of various sizes. The top figure is plotted against
deviation; the bottom figure is plotted against deviation-per-recording.
Each box spans the interquartile range (the 25th to 75th percentile) of
the deviation distribution. The whiskers form the boundaries between
extreme deviation values and outliers. The dark horizontal line marks the
median, the circle marks the mean. Lower whiskers for groups of size two,
three, and four have a deviation of zero so are not shown.
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Fig. 5.11 Simultaneous multiple alignment by the Cpm on alignment
groups of various sizes, plotted on a logarithmic scale. The top figure is
plotted against deviation; the bottom figure is plotted against deviation-
per-recording. Each box spans the interquartile range (the 25th to 75th per-
centile) of the deviation distribution. The whiskers form the boundaries
between extreme deviation values and outliers. The dark horizontal line
marks the median, the circle marks the mean. Lower whiskers for groups
of size two, three, and four have a deviation of zero so are not shown.



72



73

6—Conclusions

T his thesis investigated audio-to-audio alignment with the Cpm, an algorithm

which had not previously been used to align musical audio. Chapter 1

introduced the concept of audio-to-audio alignment, as well as the algorithms and

features commonly used to perform it. Chapter 2 presented a literature review

that included a history of musical alignment, a summary of research applications,

a discussion of feature and algorithm selection, and an overview of commercial

and open-source alignment software. Chapter 3 explained the Cpm algorithm and

described how it was used to align musical audio in this thesis. Chapter 4 described

the evaluation methodology, metrics, and implementation, as well as the choice of

dataset.

Chapter 5 presented the experimental results. First, use of a reduced subset

of the Chopin dataset was justified, as comparable Dtw alignment results were

obtained between the reduced dataset and the full Chopin dataset. Similarly, use

of the Euclidean distance measure and a diagonally biased cost-path weighting were

objectively justified. Next, it was found that the Cpm successfully aligned pairs of

recordings from the reduced Chopin dataset. Finally, it was found that alignment

by the Cpm considerably outperformed iterative pairwise alignment with Dtw, for

alignment of groups of three, four, eight, twelve, and sixteen recordings from the

reduced Chopin dataset.

6.1 Summary of contributions

The first major contribution of this thesis is the demonstrated utility of the Cpm

as a tool for musical audio-to-audio alignment, both for pairwise alignment and

for multiple alignment. This is especially significant given the dearth of multiple

alignment algorithms available for aligning audio, and the accessibility of the Cpm

through the preexisting, open-source Matlab toolbox.
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The second major contribution of this thesis is the quantified comparison of two

multiple alignment approaches, simultaneous alignment via the Cpm versus iterative

pairwise alignment via Dtw. To the best of our knowledge, such a comparison of

approaches to multiple audio-to-audio alignment has not previously been published.

It was found that the simultaneous approach performed substantially better than

the iterative pairwise approach. While it is possible that the iterative approach

implemented here could be improved through a more strategic combination of

recordings, these results indicate that care is needed when choosing an algorithmic

approach to a multiple alignment task.

6.2 Future work

The results of this thesis suggest three directions for future work: further investi-

gation of audio-to-audio alignment in general, fine-tuning the Cpm for improved

audio-to-audio alignment, and investigating additional Cpm features.

6.2.1 Further audio-to-audio alignment research

One of the greatest limitations to investigating audio-to-audio alignment, both for

this thesis and in the field in general, is a lack of ground truth corpora covering a

variety of musical recordings. To understand how any alignment algorithm, pairwise

or simultaneous, performs on audio with different types of variations, a greater

variety of corpora are needed. New corpora need to include audio in a variety of

genres, and with a variety in variation across the different recordings: variation that

is both intentional, such as with melodic ornamentation or differing instrumentation;

and variation in audio quality, such as recordings that contain different amounts

of background noise or that have been recorded from performances in different

environments. For this thesis, the Chopin dataset facilitated an effective preliminary

study of alignment with the Cpm, as it had been used for previous audio-to-audio

alignment research using Dtw. To obtain a better understanding of the intricacies

and situational performance of different algorithms, however, a wider variety of

datasets are needed.

In addition to a greater variety of corpora, a standardized audio-to-audio align-

ment evaluation framework, similar to the evaluation frameworks used by the Music

Information Retrieval Evaluation eXchange (Mirex), would facilitate a standardized

comparison of alignment performance for different audio features, algorithms, and
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corpora. As mentioned briefly in Chapter 2, Mirex is an annual competition among

cutting-edge solutions to music information retrieval (Mir) tasks (Downie 2008).

A formal evaluation framework and metric for each task serves to standardize

algorithm evaluation within the Mir community. The evaluation code developed for

this thesis could potentially be generalized into such a framework for audio-to-audio

alignment.

6.2.2 Improving audio-to-audio alignment by the CPM

It seemed that many of the larger alignment deviations of the Cpm alignments

occurred during the beginning and ending regions of the recordings. Forced

endpoint boundary constraints would almost certainly improve the alignment of

these sections, just as endpoint boundary constraints promote a global over partial

alignment approach in Dtw.

The Cpm has computational limitations in keeping with other Hmm-based mod-

els. Alignments of recordings with many frames (such as long recordings and record-

ings with high feature resolution) or feature vectors with high dimensionality or

both require prohibitively long computation times. To work with longer recordings

without shortening the input signals by increasing the frame resolution, a multiscale

alignment approach could be performed. This implementation could be modeled

after the multiscale Dtw approach taken by Müller et al. (2006).

6.2.3 Beyond the basic CPM

The Cpmwas designed to perform both alignment and difference detection, although

this thesis focused entirely on the alignment functionality. The difference detection

functionality finds regions of high and low similarity across the aligned recordings,

making it a potentially valuable tool for music research applications such as per-

formance analysis. Since basic alignment of musical recordings with the Cpm has

been deemed successful, it is now worth examining the Cpm’s difference detection

utility. Unlike alignment, little precedent has been set for a quantitative evaluation

of difference detection.

Finally, the authors of the Cpm extended it to create the hierarchical Bayesian con-

tinuous profile model (Hb-Cpm), which contains a classification functionality such

that a set of recordings can be grouped into two or more classes during alignment.1

1This functionality is included in the Cpm Toolbox for Matlab.
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Examples of potential classes could include groups for a set of recordings made in

a recording hall versus a set made at an open-air music festival, or groups based on

instrumentation—woodwind versus brass versus mallet, for a set of solo recordings.

Class-based alignment would perhaps reduce overall misalignment when aligning

a group of recordings with distinctive noise or timbre differences. Additionally,

difference detection could then be performed across classes, rather than across all

individual recordings.2

6.3 Coda

Given the proliferation of multiple recordings of the same piece (such as those taken

by fans of a particular band at many of the band’s different concerts, or from multiple

recording takes in a studio) tools such as alignment algorithms are more relevant

than ever for facilitating a large-scale, data-driven analysis of audio. It is hoped that

this thesis has demonstrated the utility of the Cpm as an effective, accessible tool for

performing multiple alignment of musical recordings.

2In this latter case, each individual recording is considered its own class.
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Appendix A—Chopin dataset excerpts

T he musical scores from the two works performed in the Chopin dataset are

shown in Figures A.1 and A.2. Only the Ballade (Figure A.1) was used for

evaluation in this thesis.

Fig. A.1 The Chopin dataset excerpt of Ballade in F major, op. 38, by
Frédéric Chopin. Reprinted from Goebl (2001): “Score prepared with
computer software following the Henle Urtext Edition.” The reduced
Chopin dataset used in this thesis spans the first 40 score events of this
excerpt (approximately nine measures).
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Fig. A.2 The Chopin dataset excerpt of Etude in E major, op. 10 No. 3,
by Frédéric Chopin. Reprinted from Goebl (2001): “Score prepared with
computer software following the Paderewski Edition.”
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